Math 3240 Topology 1, Assignment 3.

Due in class Thursday, February 27.

Questions from textbook:

Section 4.2: 16 Section 4.3: 2, 4, 11 Section 4.4: 7, 8, 12 Section 5.1: 9, 10, 13

Question A: Let

$$S^{n} = \left\{ (x_{0}, \dots, x_{n}) : \sum_{i=0}^{n} x_{i}^{2} = 1 \right\} \subset \mathbb{R}^{n+1}$$

equipped with the subspace topology. Prove that S^n is an *n*-manifold.

Question B:

Define an equivalence relation on S^n by declaring every point to be equivalent to its antipodal point, so the equivalence classes are $[\mathbf{x}] = {\mathbf{x}, -\mathbf{x}}$. Use the fact that S^n is an *n*-manifold to show that S^n / \sim is an *n*-manifold as well. The manifold S^n / \sim is commonly called $\mathbb{R}P^n$. Note: For condition (iii) of a manifold, it is sufficient that you find an open neighbourhood of each $[\mathbf{x}] \in \mathbb{R}P^n$ which is homeomorphic to an open subset of \mathbb{R}^n .