Geometry and Groups, a Dictionary

Geometric statements about points and lines	Picture in R x R	Equivalent algebraic statements
point <i>P</i> lies on line <i>a</i> (or <i>a</i> passes through <i>P</i>)	P a	$R_P \circ R_a = R_a \circ R_P$ $R_P \circ R_a$ is an involution
a is perpendicular to b	$a\perp b$	$R_a \circ R_b = R_b \circ R_a$ $R_a \circ R_b$ is an involution
a, b, c, d concurrent and $\angle(a, b) = \angle(d, c)$ OR no two of a,b,c,d intersect and dist(a, b) = dist(d, c).		$R_a \circ R_b = R_d \circ R_c$
a, b, c are concurrent and the line b bisects $\angle(a, c)$ OR no two of a,b,c intersect and dist(a, b) = dist(b, c).		$R_a \circ R_b = R_b \circ R_c$
<i>b</i> and <i>d</i> are \perp to <i>PQ</i> and dist(<i>P</i> , <i>b</i>) = dist(<i>d</i> , <i>Q</i>)		$R_P \circ R_b = R_d \circ R_Q$
<i>b</i> is the ⊥bisector of <i>PQ</i>	•	$R_P \circ R_b = R_b \circ R_Q$
<i>b</i> II <i>d</i> and <i>P</i> is equidistant from the lines <i>b</i> and <i>d</i>		$b \neq d and$ $R_d \circ R_P = R_P \circ R_b$
M is the midpoint of AC	• • •	$R_A \circ R_M = R_M \circ R_C$
AB = DC and AB DC		$R_A \circ R_B = R_D \circ R_C$

Bachmann's Axioms, Table from "A New Look at Geometry" by Irving Adler