Geometry and Groups, a Dictionary

Geometric statements about points and lines	Picture in $R \times R$	Equivalent algebraic statements	
point P lies on line a (or a passes through P)	$\underset{P}{-}$	$R_{P} \cdot R_{a}=R_{a} \cdot R_{P}$ $R_{P} 。 R_{a}$ is an involution	
a is perpendicular to b	$a \perp b$	$R_{a} \cdot R_{b}=R_{b} \cdot R_{a}$ $R_{a} \circ R_{b}$ is an involution	
a, b, c, d concurrent and $\angle(a, b)=\angle(d, c)$ OR no two of a, b, c, d intersect and $\operatorname{dist}(a, b)=\operatorname{dist}(d, c)$.	Li\|		$R_{a} \cdot R_{b}=R_{d} \cdot \mathrm{R}_{c}$
a, b, c are concurrent and the line b bisects $\angle(a, c)$ OR no two of a, b, c intersect and $\operatorname{dist}(a, b)=\operatorname{dist}(b, c)$.		$R_{a} \cdot R_{b}=R_{b} \cdot R_{c}$	
b and d are \perp to $P Q$ and $\operatorname{dist}(P, b)=\operatorname{dist}(d, Q)$		$R_{P} \circ R_{b}=R_{d} \circ R_{Q}$	
b is the \perp bisector of $P Q$		$R_{P} \circ R_{b}=R_{b} \circ R_{Q}$	
$b \\| d$ and P is equidistant from the lines b and d		$\mathrm{b} \neq \mathrm{d}$ and $R_{d} \cdot R_{P}=R_{P} \cdot R_{b}$	
M is the midpoint of $A C$	$0-0-$	$R_{A} \circ R_{M}=R_{M} \circ R_{C}$	
$A B=D C$ and $A B \\| D C$	\square	$R_{A} \circ R_{B}=R_{D} \circ \mathrm{R}_{C}$	

Bachmann's Axioms, Table from "A New Look at Geometry" by Irving Adler

