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Introduction to Geometric Mechanics

Historical Introduction

Mechanics is the subfield of physics which studies motion. There are multiple
different approaches to mechanics: Newtonian, Hamiltonian, Lagrangian,
Hamilton-Jacobi,...

(1686) The first rigorous formulation of mechanics was developed by Isaac
Newton (Newton’s Laws) and contemporaries (e.g. Hooke).
(1686-1690) Newton’s formulation of mechanics allows for a first-principles
derivation of Kepler’s laws of orbital motion.
(1760) Lagrange presents the ’principle of least action’, inventing the
Lagrangian formulation of mechanics, in terms of second order ODEs.
(1833) Hamilton develops the Hamiltonian formulation of mechanics, in
terms of first order ODEs.
(1884) Jacobi extends the work of Hamilton, reformulates mechanics in terms
of a PDE.
(1900s-Present) Lagrangian, Hamiltonian, Hamilton-Jacobi formulations are
all described with differential geometry.
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Introduction to Geometric Mechanics

Kepler’s Laws

1. The orbit of a planet around the sun is an ellipse, with the sun at one focus.

r(θ) =
p

1 + ϵ cos(θ) (1)

2. Given any time interval ∆t, the line segment joining the planet to the sun
sweeps out an area ∆A, independently of the starting position of the planet.

dA
dt = Const (2)

3. The square of the period of the orbit is proportional to the cube of the
semi-major axis of the ellipse.

P 2 ∝ a3 (3)
Key point: qualitative description of orbits in terms of few parameters.
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Introduction to Geometric Mechanics

Generalized Kepler Problem

How is the Kepler problem formulated mathematically as an initial value
problem (IVP)?
How can the methods used for this be generalized to other interesting
systems?
Can we classify which dynamical systems have bounded, periodic orbits?
Can we qualitatively describe these systems without solving the IVP?
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Introduction to Geometric Mechanics

Basic Definitions

Definition (Configuration Space)
The space of all physical configurations of a system is called the configuration
space. Typically, it is a smooth manifold we call M .

Example
Consider a point particle in three-dimensional Euclidean space. The configuration
space is just the set of all possible positions M = R3.

Remark: In this presentation we will only consider a single particle moving in a
configuration space M .
Remark: This notion can be generalized to infinite dimensional manifolds (Banach
manifolds, Frechet manifolds,...) in order to describe fields such as the
electromagnetic field.
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Introduction to Geometric Mechanics

Tangent and Cotangent Bundles

Definition (Tangent and Cotangent Bundle)
The tangent bundle TM of a smooth manifold M is the disjoint union of all
tangent hyperplanes to M .
The cotangent bundle T ∗M is the disjoint union of their dual spaces.

Definition (Vector Field)
A vector field is a smooth function v : M → TM such that v(p) lies in the
tangent space at p, TpM . We say v ∈ X(M).

Definition (Differential Form)
A differential 1-form is a smooth function α : M → T ∗M such that α(p) lies in
the dual space to the tangent space at p, T ∗

pM . We say α ∈ Ω1(M).

Remark: A differential 1-form can be applied to a vector field to get a scalar
function, α(v) ∈ C∞(M).
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Introduction to Geometric Mechanics

Vector Fields

Definition (Natural Action of Vector Field)
There is a natural action of vector fields X(M) on C∞(M), where v · f is the
directional derivative of f in the direction of v.

Remark: This action uniquely determines X(M) up to isomorphism (i.e. any
vector field is defined by its action on an arbitrary function).

Theorem (Basis for TpM)
Given a coordinate patch (x1, ..., xn), U ⊆ M , a basis for TpM is given by
{∂x1 |p, ..., ∂xn |p}, which are the partial derivative operators in each direction.

Theorem (Vector fields form a Lie algebra)
The space X(M) of vector fields forms a Lie algebra, where the Lie bracket is
defined by

[v, w] · f = v · (w · f)− w · (v · f)
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Introduction to Geometric Mechanics

Products of Forms

Definition (Tensor Product)
Given differential forms, α1, ..., αk, we can take their tensor product,

α1 ⊗ ...⊗ αk(v1, ..., vk) = α1(v1)α2(v2)...αn(vk)

Definition (Wedge Product)
Given differential forms α1, ..., αk we can take their wedge product,

α1 ∧ ... ∧ αk(v1, ..., vk) =
1

n!

∑
σ∈Sn

sgn(σ)α1(vσ(1))...αn(vσ(k))

We call such an object a differential k-form

Remark: The space of all differential k-forms is called Ωk(M).
Remark: Ωk(M) = 0 for k > dim(M) and Ω0(M) = C∞(M).
Remark: The space Ω•(M) =

⊕
Ωk(M) forms a graded algebra.
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Introduction to Geometric Mechanics

Exterior Derivative

Definition (Exterior Derivative)
The exterior derivative is the unique linear map d : Ω•(M) → Ω•(M), sending
Ωk(M) 7→ Ωk+1(M), satisfying the rules:

Given f ∈ Ω0(M) = C∞(M), we define df(v) = v · f for all v ∈ X(M).
For all α ∈ Ωk(M), β ∈ Ωℓ(M), we have

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

Remark: This makes Ω•(M) into a differential graded (dg) algebra.

Theorem (Basis for T ∗
pM)

Given a coordinate patch (x1, ..., xn), U ⊆ M , a basis for T ∗
pM is given by

{dx1|p, ..., dxn|p}.

Remark: This is the same as the Kronecker dual basis for {∂x1 |p, ..., ∂xn |p}.
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Introduction to Geometric Mechanics

General Tensors

Definition (Tensor)
A tensor field of type (k, ℓ) is a smooth functional T : T ∗Mk × TM ℓ → R.

Remark: Most of the time in physics, this is what people mean by tensor.
Remark: Differential k-forms are totally antisymmetric tensors of type (0, k).

Definition (Contraction)
Let v be a vector field and T be a (k, ℓ) tensor. We define the interior product
or contraction, v T to be the (k, ℓ− 1) tensor defined by,

v T (α1, ..., αk, v1, ..., vℓ−1) := T (α1, ..., αk, v, v1, ..., vℓ−1)

α T is defined similarly for 1-forms.

Remark: Some people use the notation ιvT instead.
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Introduction to Geometric Mechanics

(pseudo-)Riemannian Geometry

Definition (Metric)
A metric is a non-degenerate symmetric bilinear functional on TM . That is, for
any vector fields v, w,

g(v, w) = g(w, v) (Symmetric)
If g(v, w) = 0 for all w, then v = 0 (Non-Degenerate)

Remark: A metric is symmetric, so it is not a differential 2-form.

Definition (Musical Isomorphisms)
Given a metric g, we have an isomorphism TM ∼= T ∗M given by,

♭ : v 7→ v♭ := g(v,−) = ιvg = v g (4)

Given a local frame ei for TM and dual frame ei (ei(ej) := δij) for T ∗M we have

v♭ = gijv
jei (5)
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Introduction to Geometric Mechanics

Velocity and Acceleration

Definition
Let M be a smooth manifold and q : I → M a smooth curve. The velocity of the
curve is defined as v = q̇ := ∂q

∂t ∈ Tq(t)M .

Definition
The acceleration of the curve is defined as a = q̈ := ∇q̇ q̇ ∈ Tq(t)M .
For M = Rn with the standard metric g =

∑
dxi ⊗ dxi, this reduces to q̈ = d2q

dt2 .

Remark: A particle travelling along a geodesic experiences no acceleration
(Einstein’s Principle of Equivalence).
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Introduction to Geometric Mechanics

Momentum

Definition (Momentum)
Let q : I → M be a curve representing the position of a particle in a manifold M .
The momentum is defined as p ∈ T ∗

q(t)M , where

p := mq̇♭ (6)

Where m is the mass of the particle.

Remark: This is only valid for m 6= 0.
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Introduction to Geometric Mechanics

Hamiltonians

Definition (Hamiltonian)
A Hamiltonian is a smooth function H : T ∗M → R, which represents the ’total
energy’ of the system.

Definition (Hamilton’s Equations)
Given a Hamiltonian H, we may define a dynamical system, represented by
(q(t), p(t)), on the manifold T ∗M according to Hamilton’s Equations:

dqi
dt =

∂H

∂pi
= dH(∂pi) (7)

dpi
dt = −∂H

∂qi
= −dH(∂qi) (8)

Remark: The flow ΦH defined by this dynamical system can be written as the
flow of a vector field XH , called the Hamiltonian vector field.
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Introduction to Geometric Mechanics

Example: Kepler Hamiltonian

Example (Kepler system in R3/Reduced two-body problem)
Consider a particle with position q ∈ R3 and momentum p ∈ T ∗

q R3 ∼= R3. The
kinetic energy K is defined as,

K =
1

2m
‖p‖2

In a gravitational field, a particle also has potential energy, modelled for example
by the function

U = − k

‖q‖
The Hamiltonian function is then

H = K + U =
1

2m
‖p‖2 − k

‖q‖

Any Hamiltonian of the form K(p) + U(q) is called separable.
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Introduction to Geometric Mechanics

Phase Space is Symplectic

Definition (Phase Space)
Let M be the configuration space of a system. The phase space is the cotangent
bundle T ∗M .

Definition (Canonical Symplectic Form)
Let M be an n dimensional configuration space. The canonical symplectic form
Ω ∈ Ω2(T ∗M) is the closed non-degenerate 2-form on T ∗M defined locally by,

Ω =

n∑
i=1

dqi ∧ dpi (9)

Here, pi are the coordinates on the fiber T ∗
xM induced by applying the musical

isomorphism to m∂qi for each i = 1, ..., n.

Remark: Since Ω is non-degenerate, the map X 7→ Ω(X,−) defines an
isomorphism Ω̃ : X(T ∗M) → Ω1(T ∗M).
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Introduction to Geometric Mechanics

Poisson Bracket

Definition (Hamiltonian Vector Field)
Given any function f : T ∗M → R, we define a vector field Xf = Ω̃−1(df) called
the Hamiltonian vector field generated by f .

Definition (Poisson Bracket)
Let f, g : T ∗M → R be differentiable. Then the Poisson bracket of f and g is
defined by,

{f, g} = Ω(Xf , Xg) =

n∑
i=1

∂f

∂qi
∂g

∂pi
− ∂f

∂pi
∂g

∂qi
(10)

The Poisson bracket is antisymmetric, bilinear, and satisfies the Jacobi identity
and the Leibniz rule. This makes C1(T ∗M,R) into a Poisson algebra.

Remark: Hamilton’s equations can be rewritten as df
dt = {f,H}, where f = qi, pi.
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Introduction to Geometric Mechanics

Conserved Quantities

Definition (Conserved Quantity)
Let f : T ∗M → R be a smooth function, and let H : T ∗M → R be a
Hamiltonian. We say f is a conserved quantity if {f,H} = 0.

Intuitively, this means that the function f is constant along the Hamiltonian flow
generated by H.

Example
Let H = p2/2m be the Hamiltonian of a free particle. Then the momentum p is a
conserved quantity (i.e. dp

dt = 0 or equivalently {H, p} = 0.)

Next we will connect these to the concept of symmetry.
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Symmetry

Symmetry
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Symmetry

Symmetries

Definition (Symplectic Group Action)
Let G be a Lie group acting on a manifold M . We say this action is symplectic if
for each g ∈ G, (dLg)

∗Ω = Ω.

Definition (Fundamental Vector Field)
Let G be a Lie group acting on M , let g = TeG be the Lie algebra of G, and let
X ∈ g. Then the fundamental vector field X# ∈ X(T ∗M) associated to X is
defined by the equation,

X#|p =
d
dt

∣∣∣∣
t=0

(exp(tX) · (q, p)), (q, p) ∈ T ∗M (11)

Definition (Infinitesimal Symmetry)
Let G be a Lie group acting on M , let X ∈ g, and let H be a Hamiltonian. We
say that X is an infinitesimal symmetry or symmetry generator for H if
[XH , X#] = 0.
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Symmetry

Noether’s Theorem

Theorem (Noether’s Theorem - Hamiltonian Version)
Let G be a Lie group with Lie algebra g acting on M , and let H : T ∗M → R be a
Hamiltonian. If each X ∈ g gives an infinitesimal symmetry X# of H, then one
can construct a function µ : T ∗M → g∗, called the momentum map, satisfying
the differential equation

d〈µ(p), X〉 = X# Ω|p, ∀X ∈ g (12)

such that each µX : p 7→ 〈µ(p), X〉 ∈ R is a conserved quantity.

Remark: Given a Lie group G of dimension k, whose Lie algebra consists of
infinitesimal symmetries, we get k independent conserved quantities.
Remark: This gives us a procedure for calculating conserved quantities. Starting
with a basis for the Lie algebra g, we write down their fundamental vector fields,
then plug them into the symplectic form, and then integrate the result.
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Symmetry

Example: Rotational Symmetry

Example (Rotational Symmetry)
Let M = R2 \{0} and put Cartesian coordinates (x, y, px, py) on T ∗M , with
standard metric g = dx⊗ dx+ dy ⊗ dy = dr ⊗ dr + r2dθ ⊗ dθ. Consider the
Kepler Hamiltonian

H =
1

2m
(p2x + p2y)−

k√
x2 + y2

We first convert to polar coordinates (r, θ, pr, pθ). Here, r =
√

x2 + y2, and
θ = arctan 2(y, x). One can compute

∂r = (x∂x + y∂y)/
√
x2 + y2 =⇒ pr = (xpx + ypy)/

√
x2 + y2

∂θ = (x∂y − y∂x)/
√

x2 + y2 =⇒ pθ = (xpy − ypx)
√
x2 + y2

This yields,
H =

1

2m

(
p2r +

p2θ
r2

)
− k

r
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Symmetry

Example: Rotational Symmetry (Cont.)

Example (Rotational Symmetry (Cont.))
We arrived at,

H =
1

2m

(
p2r +

p2θ
r2

)
− k

r

Observe that H has no dependence on θ, so it is invariant under the action of
SO(2) sending (r, θ, pr, pθ) 7→ (r, θ +∆θ, pr, pθ). Setting so(2) = span(X1), we
have X#

1 = ∂θ, and one will find that [XH , X#
1 ] = 0. The momentum map

equation is,

dµ1 = ∂θ (dx ∧ dpx + dy ∧ dpy)

=
−y√
x2 + y2

dpx +
x√

x2 + y2
dpy

= dpθ

So µ1 = pθ + C is a conserved quantity for any constant C. In other words,
angular momentum is conserved.
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Symmetry

Integrability

Definition (Integrable Hamiltonian System)
A Hamiltonian system (M,H,Ω) is said to be completely integrable if there
exist n independent conserved quantities Q1, ..., Qn so that {H,Qi} = 0 and
{Qi, Qj} = 0 for all i, j.

Remark: The point here is that given k conserved quantities (possibly including
H), we can reduce Hamilton’s equations from a system of 2n ODEs to a system
of 2n− k ODEs. If k = n, we get complete integrability.
Remark: The level sets of each Qi are invariant Lagrangian submanifolds of T ∗M
which form a regular foliation (hence the term ’integrable’).
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Symmetry

Superintegrability

By looking only at actions of a Lie group G on M , we can only reduce the
dimension of Hamilton’s equations from 2n to n. Can we acquire more conserved
quantities using a more general method?

Definition (Superintegrable)
A Hamiltonian system is said to be superintegrable if there exist k > n
independent conserved quantities whose Poisson brackets with each other vanish.
If k = 2n− 1, we say it is maximally superintegrable.

Theorem
The solutions to a maximally superintegrable system follow closed orbits.

Proof: Suppose we have a superintegrable system. Then there are 2n− 1
conserved quantities, and the solution to the system lies on the intersection of
their level sets. Since the conserved quantities are independent, the dimension of
the intersection is 1. With some more work, it can be shown that these orbits
close.
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Symmetry

As we saw previously, besides H the majority of conserved quantities we seem to
find are linear in the momenta pi. We found conserved linear momentum px, py as
well as conserved angular momentum xpy − ypx. Are there more conserved
quantities which are higher degree polynomials in the momenta?
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Symmetry

Isometries

Recall that the Hamiltonian for the Kepler problem was of the form,

H =
1

2m
g−1(p, p) +

k

f(q)

Where g−1 is the induced metric on T ∗M . For any group action to be an ordinary
symmetry of H, it must therefore preserve the metric. Therefore any symmetry
group is a subgroup of the isometry group.

Definition (Killing Vector Field)
Let g be a metric on a manifold M . Recall that the isometry group is the group
Iso(M, g) of diffeomorphisms of M which preserve g. The fundamental vector
fields X# of Iso(M, g) are called the Killing fields, and obey the Killing
equation,

∇g
iX

#
j +∇g

jX
#
i = 0
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Symmetry

Killing Tensors

Theorem
Let H be a Hamiltonian invariant under Iso(M, g). Let f : T ∗M → R be a
function of the form f(q, p) = Ki1i2...ik(q)p

i1 ...pik . Then for f to be conserved it
is necessary that,

The coefficients KI , for each |I|, form the components of a symmetric tensor
field.
Each KI satisfies the generalized Killing equation,

Sym(∇gK) = 0 (13)

Such a K is called a Killing tensor field.

Remark: Conserved quantities arising from a Killing tensor of rank ≥ 2 can not
always be derived from a Lie group action on M . Sometimes, you can get them
by acting on T ∗M .
Remark: It is often easier to find these by solving {H, f} = 0 rather than
Sym(∇gK) = 0.
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Symmetry

Example: Laplace-Runge-Lenz Vector

Example (Laplace-Runge-Lenz Vector)
Continuing with our example of the Kepler problem in R2, we have conserved
quantities,

H =
1

2m
p2r +

p2θ
2m

1

r2
− k

r
, Q1 = pθ

Let us look for others of the form

K1p
2
r +K2p

2
θ +K3prpθ +W

We first plug this into the equation {H, f} = 0 and expand in like powers of
pr, pθ. We arrive at a system of DEs with two linearly independent solutions,

A1 = −rprpθ sin θ + (rp2θ −mk) cos θ (14)
A2 = rprpθ cos θ + (rp2θ −mk) sin θ (15)

The vector A = (A1, A2) is called the Laplace-Runge-Lenz vector.
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Symmetry

Example: Laplace-Runge-Lenz Vector (Cont.)

Example (Laplace-Runge-Lenz Vector (Cont.))
Now we have the conserved quantities

A1 = −rprpθ sin θ + (rp2θ −mk) cos θ (16)
A2 = rprpθ cos θ + (rp2θ −mk) sin θ (17)

These are linearly independent, but are they independent in the sense that
{A1, Qi} = 0? No, we have

{pθ, A1} = −A2, {pθ, A2} = −A1

{A1, A2} = −2mHpθ

Furthermore,
A2

1 +A2
2 = m2k2 + 2mHp2θ

So the magnitude of A is not independent of the other quantities. However, the
direction, arctan(A2/A1) is.
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