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Shape signatures

To a shape we wish to attribute a signature, also called shape

descriptor, that is a mathematical object encapsulating the shape's

properties and allowing its comparison to other shapes.

This signature shall have to be computable algorithmically.

For this we will use persistent homology.
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Filtration

De�nition

A �ltration of topological spaces is a collection Xu of topological

spaces where u ∈ I with I an ordered set, with the property that

Xu ⊆ Xv and that the topology of Xu is induced by that of Xv if

u ≤ v .

The inclusion j (u,v) : Xu ↪→ Xv induces for every q a linear map

Hq(j (u,v)) between the homology spaces Hq(Xu) and Hq(Xv ).
Hq(j (u,v)) contains the homology q-cycles of Xu that still persist in

Xv . If v = u + t, we may say that these cycles have a duration of

persistence equal to or greater than t.
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Persistence computation
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Simplex pairs : (v2, e1), (v3, e2), (v4, e3), (e5, f1), (v1,∞), (e4,∞)
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Persistence computation

The preceding algorithm for computing persistence is taken from D.

Cohen-Steiner, H. Edelsbrunner and D. Morozov. Vines and

vineyards by updating persistence in linear time. In Proc. 22nd

Ann. Sympos. Comput. Geom., 119�126, 2006.
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Sublevel �ltration

De�nition

Let f : X → R be a continuous function. For u ∈ R, we de�ne

Xu = {x ∈ X | f (x) ≤ u}.

f is called a �ltering or measuring function, and Xu, u ∈ R is a

�ltration, called the sublevel �ltration for f .

De�nition

The order q persistent Betti number function for (X , f ) is the

function de�ned as

βf ,q(u, v) = dim imHq(j (u,v)).
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Bottlene
k distan
e

De�nition

Let βf and βg be two persistent Betti number fun
tions for

f : X → R and g : Y → R. The bottlene
k distan
e or mat
hing

distan
e between βf and βg is

d(βf , βg ) = min

σ
max

p∈Dgm(βf )
δ(p, σ(p))

where σ is taken along the set of bije
tions between Dgm(βf ) and
Dgm(βg ) and where

δ((u, v), (u′

, v
′)) = min

{

max{|u − u
′|, |v − v

′|},max

{

v − u

2

,
v
′ − u

′

2

}}

.
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Call ∆ the diagonal {(u, v) ∈ R× R | u = v}, ∆+
the set

{(u, v) ∈ R×R | u < v}, and ∆∗
the set ∆+

to whi
h we add the

points at in�nity of the form (u,∞). Persisten
e diagrams'


ornerpoints therefore exist in the spa
e ∆∗ ∪ {∆}.
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Stability

Theorem

Let f , g : X → R be two 
ontinuous �ltering fun
tions, and βf and

βg asso
iated persistent Betti number fun
tions. Then

d(βf , βg ) ≤ ‖f − g‖.

This result proves the stability of the mat
hing distan
e with

respe
t to perturbations in the measuring fun
tion.
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Multi�ltration

We would like to use the discriminatory power of more than one

�ltering function at a time.

Solution : multi�ltration.

De�nition

A multi�ltration is an indexed collection of topological spaces X~u
where ~u ∈ I k , with the property that X~u ⊆ X~v and that the

topology of X~u is induced by that of X~v if ~u � ~v , that is, if ui ≤ vi
for i = 1, . . . , k .
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Sublevel multi�ltration

De�nition

We shall consider a continuous function ~f = (f1, . . . , fk) : X → Rk .

For ~u ∈ Rk , we shall de�ne

X~u = {x ∈ X | ~f (x) � ~u}.

X~u, ~u ∈ Rk is called the sublevel multi�ltration with respect to the

�ltering function ~f .
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Multidimensional persistence diagrams

There exists no shape signature as compact as persistence diagrams

in the case of multidimensional persistent homology. However, we

can reduce its computation to ordinary persistent homology

computation for a parametrized family of R-valued functions.
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Reduction

De�nition

We will call admissible a pair (~l , ~b) ∈ Rk × Rk where li > 0 for

i = 1, . . . , k ,
∑

li = 1,
∑

bi = 0, and we will denote the set of

admissible pairs Admk .

(~l , ~b) ∈ Admk corresponds to a line in Rk whose direction vector

has positive components (in R2, this means a line of positive slope).

We notice that for all (~u, ~v) ∈ Rk × Rk with ~u � ~v , there is a

unique admissible pair (~l , ~b) such that for well-chosen s, t ∈ R,
~u = s~l + ~b and ~v = t~l + ~b.
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Reduction

De�nition

Let ~f : X → Rk be a measuring function. For every pair

(~l , ~b) ∈ Admk , we de�ne

f
(~l ,~b)

(x) = min
i=1,...,k

li max
i=1,...,k

fi (x)− bi
li

.

Theorem

For every (~u, ~v) ∈ Rk ×Rk with ~u ≺ ~v , ~u = s~l + ~b and ~v = t~l + ~b,
we have

β~f (~u, ~v) = βf
(~l,~b)

(s, t).

The computation of β~f may therefore be reduced to the

computation of βf
(~l,~b)

for each (~l , ~b) ∈ Admk .
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Multidimensional matching distance

De�nition

Let β~f et β~g be two k-dimensional persistent Betti numbers for
~f : X → Rk et ~g : Y → Rk . The k-dimensional matching distance

between β~f et β~g is de�ned as

D(β~f , β~g ) = max
(~l ,~b)∈Admk

d
(
βf

(~l,~b)
, βg

(~l,~b)

)
.

This matching distance is also stable: for ~f , ~g : X → Rk ,

D(β~f , β~g ) ≤ ‖~f − ~g‖

where ‖~h‖ = maxx∈X maxi=1,...,k |hi (x)|.
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Advantages

Multidimensional persistence allows the extraction of more

information from a shape than ordinary persistence.
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1  
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It also allows one to distinguish and compare noisy images, objects

sampled by point clouds, and fuzzy sets.
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Image retrieval tolerant to domain perturbation

Let X be a topological space, K ,K ′ ⊂ X , and ϕ : K → Rn,

ϕ′ : K ′ → Rn continuous �ltering functions. If they represent point

clouds or images subjected to noise, K and K ′ may di�er in

topology, making their comparison by means of persistent

homology more problematic.

However, extending ϕ,ϕ′ so that they take all X as their domain,

and substituting the sets K ,K ′ with appropriate functions

fK , fK ′ : X → R so that perturbations of the sets become

perturbations of these functions, we can then use persistence to

compare the functions Φ = (fK , ϕ) : X → Rn+1 and

Φ′ = (fK ′ , ϕ′) : X → Rn+1.



Persistence Multidimensional persistence Coherent matching distance

Image retrieval tolerant to domain perturbation

Let X be a topological space, K ,K ′ ⊂ X , and ϕ : K → Rn,

ϕ′ : K ′ → Rn continuous �ltering functions. If they represent point

clouds or images subjected to noise, K and K ′ may di�er in

topology, making their comparison by means of persistent

homology more problematic.

However, extending ϕ,ϕ′ so that they take all X as their domain,

and substituting the sets K ,K ′ with appropriate functions

fK , fK ′ : X → R so that perturbations of the sets become

perturbations of these functions, we can then use persistence to

compare the functions Φ = (fK , ϕ) : X → Rn+1 and

Φ′ = (fK ′ , ϕ′) : X → Rn+1.



Persistence Multidimensional persistence Coherent matching distance

Examples of perturbed domains

Four binary images of an octopus. Last three correspond to the

�rst one subjected to di�erent kinds of noise.
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Choice of set distance function

The choice of fK depends on what deformation is expected. For

small perturbations, sets are comparable using the Hausdor�

distance, and we take as fK the distance from K (in any norm). In

presence of outlying points, sets can be compared using the

symmetric di�erence pseudometric, in which case fK is taken as χK

convolved with a ball.

See Persistent Betti numbers for a noise tolerant shape-based

approach to image retrieval, P. Frosini and C. Landi (2012) for

details.
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symmetric di�erence pseudometric, in which case fK is taken as χK

convolved with a ball.

See Persistent Betti numbers for a noise tolerant shape-based

approach to image retrieval, P. Frosini and C. Landi (2012) for

details.
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Bidimensional persistence

In the case of a bi�ltration given by ϕ = (ϕ1, ϕ2) : X → R2, we

consider the �ltration along a line r(a,b) de�ned by a unit vector (in

‖ · ‖∞) (a, 1− a) and a point (b,−b).

Each such choice of line de�nes a persistence diagram Dgm(ϕa,b).
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Bidimensional persistence

Formally, we consider the �ltering function ϕa,b : X → R where

ϕa,b(x) = min{a, 1− a}max

{
ϕ1(x)− b

a
,
ϕ2(x) + b

1− a

}
.

The normalization by min{a, 1− a} is important to ensure stability

of the multidimensional matching distance.
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Multidimensional matching distance

The (classical) bidimensional matching distance between

ϕ : X → Rn, ψ : Y → Rn is de�ned as

D(ϕ,ψ) = sup
(a,b)

d (Dgm(ϕa,b),Dgm(ψa,b))

where d is the one-dimensional bottleneck distance.

This distance is stable :

D(ϕ,ψ) ≤ ‖ϕ− ψ‖∞.
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Interesting results

This framework has been established for several years. In the course

of our experiments with the computation of the bidimensional

matching distance, we noticed that the supremum over (a, b)
always seemed to be reached at a point where a = 1/2, that is, a
line ra,b of slope 1.
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Conjecture

It seems to be the case that we should be able to compute

Dgm(ϕa,b) and Dgm(ψa,b) only for a = 1/2.

This is our conjecture:

D(ϕ,ψ) = sup
(a,b)

d (Dgm(ϕa,b),Dgm(ψa,b))

= sup
b

d
(
Dgm(ϕ1/2,b),Dgm(ψ1/2,b)

)
However, this conjecture showed itself hard to prove.
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Coherent matching

In occurred to us that the way the classical bidimensional matching

distance is de�ned might not be the most natural.

Consider the two parametrized sets At = {0, 1} and
Bt = {t, 1− t}, t ∈ [0, 1]. The classical matching distance between

At and Bt equals 1/2, reached at t = 1/2.
However, there are two coherent matchings between At and Bt ,

and both actually have a cost of 1.
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Coherent matching distance

To de�ne a coherent matching distance between Dgm(ϕa,b) and

Dgm(ψa,b), we thought of �xing (ā, b̄) and a matching between

Dgm(ϕā,b̄) and Dgm(ψā,b̄). We would then use the stability of

normalized persistence diagrams to follow the points over a path c
going from (ā, b̄) to any (a, b).
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First problem : tracking points

The �rst problem is that if at parameter values (a, b), Dgm(ϕa,b)
has points of multiplicity greater than 1, we cannot follow them

further since they lose their identi�cation.

A solution is to call such parameter values singular and exclude

them from computation, that is, limit ourselves to the regular

parameter values:

Reg(ϕ) = {(a, b)|Dgm(ϕa,b) does not contain multiple points}.
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Monodromy

However, even while moving only along paths

c : [0, 1]→ Reg(ϕ) ∩ Reg(ψ), coherent matchings between

Dgm(ϕc(t)) and Dgm(ψc(t)) do not depend only on c(0) and c(1),
but on the homotopy class of c relative to c(0) and c(1).

This is what we refer to as the monodromy phenomenon in

bidimensional persistent homology.
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Example in the visualizer

Example (Nontrivial monodromy)

Consider the function ϕ : R2 → R2 de�ned on the plane in the

following way: ϕ1(x , y) = x , and

ϕ2(x , y) =


−x if y = 0

−x + 1 if y = 1

−2x if y = 2

−2x + 5
4 if y = 3

,

ϕ2(x , y) then being extended linearly for every x on the segment

joining (x , 0) with (x , 1), (x , 1) with (x , 2), and (x , 2) to (x , 3). On
the half-lines {(x , y) ∈ R2|y < 0} and {(x , y) ∈ R2|y > 3}, ϕ2 is

then being taken with constant slope −1 in the variable y .
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Example in the visualizer

Figure: Function ϕ2 of previous example. Depth is x , width is y .
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Monodromy

Let p : X̃ → X a covering map onto the topological space X , and

let x ∈ X . In algebraic topology, we refer to as monodromy the

phenomenon by which, for a loop γ : I → X where

γ(0) = γ(1) = x , and for x̃ ∈ p−1(x) an element of the �bre of x ,
the associated continuous path γ̃ such that γ̃(0) = x̃ and p ◦ γ̃ = γ
might not be such that γ̃(1) = x̃ .

In other words, as we turn around a singularity, it may be necessary

to de�ne applications on the cover X̃ of X in order to guarantee

their continuity.
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Genericity condition

To alleviate the di�culty of monodromy, we will �rst assume that

the sets of singular pairs for ϕ and ψ are discrete. We can then also

assume that no parameter values are such that Dgm(ϕa,b) or

Dgm(ψa,b) have points of multiplicity strictly greater than 2.

This ensures that loops in Reg(ϕ) ∩ Reg(ψ) can be factored into

loops that induce only transpositions on Dgm(ϕa,b) and

Dgm(ψa,b).
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Simplifying assumptions

In our research, we have assumed that the topological space X is a

manifold M homeomorphic to the m-sphere Sm, with m ≥ 2. This

ensures that there is a single point at in�nity in Dgm(ϕa,b) and

Dgm(ψa,b) for homology degree 0 and m, and none for other

homology degrees.

We also assume, for technical reasons, that a real value ε > 0 exists

such that if two proper points P1,P2 of Dgm(ϕ(ā, b̄)) have

Euclidean distance less than ε from the diagonal

∆ := {(u, v) ∈ R2|u = v}, then the Euclidean distance between P1

and P2 is not smaller than ε, for all regular (a, b), and that the

same is also true for Dgm(ψ(ā, b̄)).
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Transporting a matching

Given a homotopy fτ = H(τ, ·) between f and g : M → R, which in

our case will be along the path c , we must specify what it means to

transport a point P̄ of Dgm(f ) along this homotopy.

If P(τ) is a path, we call it admissible for H if

1 P(τ) belongs to Dgm(fτ ) for every τ ∈ [0, τ̄ ];

2 P(τ) meets ∆ at a �nite number of points;

3 P(τ) �does not stop� at any point of ∆ if it can �move on� in

the set ∆+ := {(u, v) ∈ R2|u < v}.
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Transporting a matching

Proposition

Let H(τ, ·) be a homotopy between two continuous functions

f , g : M → R.
For every point P̄ that belongs to Dgm(f ) and has multiplicity 1,

an ε > 0 and a unique path P : [0, ε]→ ∆+ ∪∆ exist, such that

P(0) = P̄ and the path P(τ) is admissible for the restriction of

H(τ, ·) to the set [0, ε].

This means that we can follow the points in Dgm(f ) along H.
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Transporting a matching along a path

In our case, what we need is

Proposition

Let c : [0, 1]→ Reg(ϕ) be a continuous path with c(0) = (a, b).
For every proper point P̄ ∈ Dgm(ϕa,b), a unique path

P : [0, 1]→ ∆+ ∪∆ admissible for c exists, such that P(0) = P̄ .

We say that c transports P̄ to P(1) with respect to ϕ.
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Transporting a matching along a path

Let σa,b be a matching between Dgm(ϕa,b) and Dgm(ψa,b), with
(a, b) ∈ Reg(ϕ) ∩ Reg(ψ). We can naturally associate to σa,b a

matching σc(1) : Dgm(ϕc(1))→ Dgm(ψc(1)). We set

σc(1)(P ′) = Q ′ if and only if c transports P̄ to P ′ with respect to ϕ

and Q̄ to Q ′ with respect to ψ. We also say that c transports σa,b
to σc(1) along c with respect to the pair (ϕ,ψ).

We are now ready to introduce the coherent 2D matching distance.
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Coherent 2D matching distance

De�nition

Fix (a, b) ∈ Reg(ϕ) ∩ Reg(ψ). Let Γ be the set of all continuous

paths c : [0, 1]→ Reg(ϕ) ∩ Reg(ψ) with c(0) = (a, b). Let S be

the set of all matchings σ : Dgm(ϕc(0))→ Dgm(ψc(0)). For every

σ ∈ S and every c ∈ Γ, let T
(ϕ,ψ)
c (σ) be the matching obtained by

transporting σ along c with respect to the pair (ϕ,ψ). We de�ne

the coherent 2D matching distance CDmatch(ϕ,ψ) as

CDmatch(ϕ,ψ) = max

{
min
σ∈S

sup
c∈Γ

cost
(
T

(ϕ,ψ)
c (σ)

)
, γ∞

}
,

where γ∞ is the maximum varying (a, b) of the distance between

the point at in�nity of Dgm(ϕa,b) and the point at in�nity of

Dgm(ψa,b) for degrees 0 and m, and 0 for the other degrees.
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Properties of CDmatch

Proposition

The de�nition of CDmatch(ϕ,ψ) does not depend on the choice of

the point (a, b) ∈ Reg(ϕ) ∩ Reg(ψ).

Proposition

CDmatch(ϕ,ψ) is a pseudo-distance.

Theorem

Dmatch(ϕ,ψ) ≤ CDmatch(ϕ,ψ) ≤ ‖ϕ− ψ‖∞.
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