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Abstract:
A group is left-orderable (bi-orderable) if there is a total order invariant under multiplication from the

LHS (resp. both sides). A group is generalized torsion free if no product of conjugates of any nontrivial
element is trivial. We will recall a sufficient condition ensuring an amalgam of two groups to be generalized
torsion free. As applications, we prove two results: (1) there is a 3-manifold whose fundamental group is
generalized torsion free and not orderable and (2) there is a group which is generalized torsion free and
not left orderable. These results resolve a conjecture of Motegi and Teragaito and Problem 16.48 of the
Kourovka Notebook (which is also Question 2.1 in Unsolved problems in ordered and orderable groups,
arXiv:0906.2621), respectively. In this talk, we will focus on the proof of the first result.

This is a joint work with Adam Clay.
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Figure 1: Containment Relations

1 Introduction and definitions

A group G is left-orderable is there is a total order < on G which is invariant under multiplication from
LHS; i.e., a < b implies ca < cb for all a, b, c ∈ G. We call such an order a left-ordering of G. Similarly, we
say G is bi-orderable if there is a total < order on G invariant under multiplication from both sides and call
this < a bi-ordering on G.

An element g in a group G is called a generalized torsion element if there are h1, · · · , hn ∈ G with
n ≥ 1 such that gh1 · · · ghn = 1. Note that a torsion element (a nontrivial element of finite order) is a
generalized torsion element. We say a group is generalized torsion free (resp. torsion free) if it doesn’t
contain a generalized torsion (resp. torsion) element.

We write LO, BO, TF, and GTF for the words left-orderable, bi-orderable, torsion free and generalized
torsion free respectively. We use {LO} (resp. {BO}, {TF}, {GTF}) for the set of LO (resp. BO, TF, GTF)
groups. The previously known containment relations among these four sets are given by Figure 1.

The only unknown relation is whether {GTF} is contained in {LO}; i.e., whether every GTF group
is an LO group. This is Problem 16.48 of the well-known Kourovka Notebook and it’s also Question 2.1
in Unsolved problems in ordered and orderable groups, arXiv:0906.2621. As it’s shown in Figure 1, it’s
known that a GTF group might not be bi-orderable. However, it’s not known whether this is still true if
we only consider a special type of group. For instance, it’s conjectured by Motegi and Teragaito that for
the fundamental groups of 3-manifolds, one is GTF if and only it’s BO. Now we are able to solve these
two problems; we prove that there is a group which is GTF and not LO and there is a 3-manifold whose
fundamental group is GTF and not BO. The proof is based on a theorem which provide a sufficient condition
for an amalgam of two groups to be GTF. (We have reported this result in this seminar last year and we
will recall it in this talk.)

In this talk, we focus on the construction of the GTF and non-BO 3-manifold group. We will first give the
construction of the 3-manifold, recall the aforementioned GTF-amalgam theorem, and then briefly discuss
the proof that the 3-manifold group is non-BO and GTF.

2 The construction of the 3-manifold

First, we let K be the figure-8 knot, as shown in Figure 2. Let N(K) be a closed tubular neighborhood of
K and let M be complement of interior of N(K) in R3. Then M is a closed 3-manifold. Let M1 and M2 be
two copies of M . The boundaries ∂M1 and ∂M2 are homeomorphic to the torus S2, thus have fundamental
groups isomorphic to Z2. Let µi, λi be the generator of the abelian group π1(∂Mi). We will construct an
homeomorphism ϕ : ∂M1 → ∂M2 such that the induced isomorphism ϕ∗ : π1(∂M1) → π1(∂M2) sends µ1

to µ2 and λ1 to µ2λ2. We then let W be the 3-manifold patching M1 and M2 together through ϕ; i.e.,
W = M1 ⊔ϕ M2 is the disjoint union of M1 and M2 modulo the identification p = ϕ(p) (p ∈ ∂(M1)). Then
by Seifert–Van Kampen theorem, we have

π1(W ) = π1(M1) ∗ϕ∗ π1(M2).

We now write down the group π(Mi) and the map ϕ algebraically. Since Mi are just the copies of M ,
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Figure 2: Figure-8 Knot

we will just consider π1(M). First, the group π1(M) is generated by x1, x2, x3, x4 subject to the following
Wirtinger relations

x
x−1
3

1 = x2, xx4
2 = x3, x

x−1
1

3 = x4, xx2
4 = x1.

Here we use ab for the conjugate b−1ab. Writing x = x1, y = x2, we have the following presentation for the
group

π1(M) = ⟨x, y|wx = yw⟩, with w = xy−1x−1y.

As subgroup of π1(M), π1(∂M) has meridian µ := x1 = x and longitude

λ := x−1
3 x4x

−1
1 x2 = (w−1)y

−1xw.

(Note that x
x−1
3 x4x

−1
1 x2

1 = x1 using the Wirtinger relations, thus we see algebraically that µ and λ do
commute.)

Now we see how to construct the homeomorphism ϕ. Let Loop(µ) and Loop(λ) be loops in ∂M rep-
resenting the meridian µ and longitude λ, respectively. There is an homeomorphism h1 from ∂M to torus
S2 := S1 × S1 such that it sends Loop(µ) and Loop(λ) to

S1 × {1} = {(e2πis, 1)|s ∈ R} and {1} × S1 = {(1, e2πit)|t ∈ R},

respectively. There is a homeomorphism h2 from S2 to R2/Z2, sending (e2πis, e2πit) to (s̄, t̄) (s, t ∈ R). Now,
consider the homeomorphism h3 on R2/Z2 by the map

[ s̄t̄ ] 7→ [ 1 1
0 1 ] [

s̄
t̄ ] =

[
s̄+t̄
t̄

]
.

Note that this homeomorphism fixes [ s̄0 ] and send
[
0
t̄

]
to

[
t̄
t̄

]
. Also the loop defined by t 7→ (e2πit, e2πit)

is homotopic to the composition of the loops defined by s 7→ (e2πis, 1) and t 7→ (1, e2πit) respectively. (We
can construct the explicit homotopy.) Now, through the identification h2 ◦ h1, we can use h3 to define a
homeomorphism on ∂M such that the induced isomorphism on π1(∂M) sends µ to µ and λ to µλ. Inducing
this to the copies, there is a homeomorphism ϕ from ∂M1 to ∂M2, such that

ϕ∗ : µ1 7→ µ2, λ1 7→ µ2λ2.
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To wrap it up, we have, for the manifold W = M1 ⊔ϕ M2,

π1(W ) = π1(M1) ∗ϕ∗ π1(M2)

= ⟨x1, y1|w1x1 = y1w1⟩ ∗ϕ∗ ⟨x2, y2|w2x2 = y2w2⟩,
= ⟨x1, y1, x2, y2|w1x1 = y1w1, w2x2 = y2w2, µ1 = µ2, λ1 = µ2λ2⟩,

where wi = xiy
−1
i x−1

i yi, µi = xi and λi = (w−1
i )y

−1
i xiwi.

3 Proof the π1(W ) is non-BO and GTF

It’s quite easy to prove that π1(W ) is Non-BO. The key is that if a finitely generated group is BO, then a
quotient of it is the group of integers. However, it’s quite direct to verify that the abilianization of π1(W ) is
trivial, hence it can’t be BO.

The proof that π1(W ) is GTF is based on the next result:

Theorem 3.1 (C, Clay). Let G = A ∗ϕ∗ B be an amalgam of two groups A and B, where ϕ∗ : C → D is an
isomorphism from a subgroup C of A to a subgroup D of B. Then G is GTF if C and D are RTF in A and
B respectively and there is a family Pi i ∈ I (resp. Qj j ∈ J) of normal subsemigroups of A (resp. B) such
that the next two conditions are satisfied

(1) A\{1} = ∪i∈IPi and B\{1} ∪j∈J Qj. (Covering condition)

(2) For every Pi (resp. Qj) there is a Qj (resp. Pi) such that ϕ∗(Pi ∩C) = Qj ∩D. (Matching condition)

A subgroup C is RTF in group A if for all a ∈ A\C and c1 · · · cn ∈ C with n ≥ 1, ac1 · · · acn ̸∈ C.
We apply this theorem to the amalgam π1(W ) = π1(M1) ∗ϕ∗ π1(M2).

(A) First, we prove that π1(M) is BO. Recall that π1(M) = ⟨x, y|xw = wy⟩ with w = xy−1x−1y. Let
G = ⟨a, b, t|tat−1 = aba, tbt−1 = ab. It can be proved that the map f : G → π1(M) given by
f(a) = w, f(b) = [w, x−1] (where [g, h] is the commutator ghg−1h−1) and f(t) = x is an isomorphism.
Then it follows that the subgroup H of π1(M) generated by w and [w, x−1] is normal, isomorphic to
the free group F2 of rank two. The abelianization of the conjugation by x on H, given by the matrix
[ 2 1
1 1 ], have positive real eigenvalues. Therefore, by a result of Perron-Rolfsen, there is a bi-ordering
on H which is invariant under the conjugation by x. Thus, this bi-ordering can be extended to a
bi-ordering of π1(M). Put it in another way, we can choose a positive cone Q of H such that λ ∈ Q
and let R = {g ∈ π1(M)|f(g) > 0}, where f : π1(M) → Z is the abelianization sending x to 1, then
we have Q ∪R is a positive cone of π1(M)

(B) Second, the proof that π1(∂M) is RTF in π1(M) is based on a 1976’s result of Jonathan Simon, which
ensures that π1(∂M) is isolated in π1(M). Then we use the fact that an isolated abelian subgroup of
a bi-orderable group is RTF.

(C) Third, the construction of the families of the normal subsemigroups. This is the most difficult part of
the proof. Let’s first write down the two families as following:

R±1
1 , Q±1

1 , X±1
(−1,1), Y ±1

1

X∓1
(1,1), Y ±1

2 , R±1
2 , Q±1

2

We will need to define the subsemigroups on the first (resp. second) line, which gives eight normal
subgroups of π1(M1) (resp. π1(M2)). We will see that their unions are exactly the non-trivial elements
of π1(M1) and π1(M2), respectively. Finally, we need to show that they match each pair of subgroups
in a column “matches”; meaning, for example ϕ∗(R±1

1 ∩ π1(∂M1)) = X∓1
(1,1) ∩ π1(∂M2). We will not

give much detail, but make the following remarks to finish the talk.
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(a) The subsemigroups Ri, Qi are the copies in π1(Mi) of Q,R given in (A). Mainly because of this,
the covering condition in Theorem 3.1 is satisfied.

(b) The construction of X(−1,1) and X(1,1) uses a result of Steve Boyer, Cameron Gordon, and Ying
Hu, which gives some homomorphisms from π1(M) to the covering group of Homeo+(S

1), which
can be written as

Co := {f ∈ Homeo+(R)|f(x+ 1) = f(x) + 1,∀x ∈ R}.

It also uses the tool of translation numbers, which gives a map from Co to Z.
(c) The construction of Yi are quite direct. Take a positive cone P1 of π1(M) containing µ−1

1 λ1 and
let Y1 = P1 ∩ NCπ1(M)(µ

−1
1 λ1). (We use NCG(g) for the normal closure of g in G.) Similarly,

Y2 = P2 ∩NCπ2(M)(µ2λ2), where P2 is a positive cone of π2(M) containing µ2λ2.

(d) We remark that the proof of the matching condition involving Yi uses Dehn surgery and the
theorem that the fundamental group of a closed orientable aspherical and irreducible 3-manifold
is torsion free.
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