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PRELUDE

Algebra is the offer made by the devil to the mathematician. The devil
says: “I will give you this powerful machine, it will answer any
question you like. All you need to do is give me your soul: give up
geometry and you will have this marvellous machine.”

— Michael Atiyah
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PRELUDE

3-manifold group = the fundamental group of a 3-manifold

Manifolds are always assumed to be connected, compact and
oriented/orientable, unless otherwise stated.

In dimension 3, algebra almost “determines” geometry and topology.

Poincaré Conjecture (Perelman, Thurston, etc.)
Every 3-dimensional manifold which is closed, connected, and has
trivial fundamental group, is homeomorphic to S3.
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DEFICIENCY

Definition
Let G = ⟨g1, . . . , gn | r1, . . . , rk⟩ be a finitely presented group. The
deficiency of the presentation is defined to be n − k. The deficiency
def(G) of G is the maximal deficiency of all possible presentations.

Some classical results from group (co)homology:

Given a finite presentation 1 → R → Fn → G → 1 for G,
▶ H1(G) = G/[G, G] = Fn/[Fn, Fn]R,
▶ H2(G) = (R ∩ [Fn, Fn])/[R, Fn],
▶ def(G) ⩽ b1(G) − b2(G).
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DEFICIENCY

def(G) = max{# generators − # relators in a finite presentation}

⩽ b1(G) − b2(G)

Examples
▶ def(Fn) = n.
▶ def(Z2) = 1, def(Z3) = 0 and def(Zn) < 0 for n ⩾ 4.
▶ |G| < ∞ =⇒ def(G) ⩽ 0, for otherwise the abelianization is

infinite.
▶ def(π1(Σg)) = 2g − 1 with the canonical presentation.
▶ The only finitely generated abelian groups with def(G) = 0 are

Z/nZ,Z⊕ Z/nZ and Z3.
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HEEGAARD SPLITTING

Handlebody Hg =B3 with g copies I × D2 attached

along (∂I)× D2 → ∂B3

∂Hg = Σg surface of genus g
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HEEGAARD SPLITTING

Definition
A Heegaard splitting of a closed 3-manifold M is a decomposition

M = H1 ∪ H2

such that
▶ H1, H2 are handlebodies;
▶ ∂H1 = ∂H2 = H1 ∩ H2.

Example
▶ S3 admits a Heegaard splitting with H1 = H2 = B3 trivially.
▶ S3 admits a Heegaard splitting with H1 = H2 = S1 × D2.
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HEEGAARD SPLITTING

Theorem (Moise, etc.)
A topological 3-manifold admits precisely one smooth structure (up to
diffeomorphism) and precisely one piecewise structure (up to
piecewise-linear homeomorphism).

In other words, every 3-manifold can be triangulated.

Theorem
Every closed 3-manifold admits a Heegaard splitting.

Sketch of proof.
Triangulate M. H1 is the closure of the regular neighbourhood of
1-skeleton and H2 is the closure of the complement.
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HEEGAARD SPLITTING

Apply the van Kampen theorem to M = H1 ∪ H2:

π1(M) = π1(H1) ∗π1(Σg) π1(H2)

= ⟨x1, . . . xg, y1, . . . , yg | f∗(ai) = g∗(ai), i = 1, . . . , 2g⟩

▶ π1(H1) = ⟨x1, . . . , xg⟩,
▶ π1(H2) = ⟨y1, . . . , yg⟩,
▶ π1(Σg) = ⟨a1, . . . , a2g |

∏g
i=1[a2i−1, a2i]⟩,

▶ f∗ is induced by f : Σg → ∂H1,
▶ g∗ is induced by g : Σg → ∂H2.

Corollary
Let M be a closed 3-manifold. Then def(π1(M)) ⩾ 0.
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PRIME AND IRREDUCIBLE 3-MANIFOLDS

Connected sum

M1#M2 := (M1 \ B1) ∪f (M2 \ B2)

▶ Bi = 3-balls
▶ f = an orientation-reversing homeomorphism between ∂B1 and

∂B2

Definition
A 3-manifold M is called prime if M = M1#M2 implies M1 = S3 or
M2 = S3.
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PRIME AND IRREDUCIBLE 3-MANIFOLDS

Definition
A 3-manifold M is called prime if M = M1#M2 implies M1 = S3 or
M2 = S3.

Definition
A 3-manifold M is called irreducible if every embedded 2-sphere in M
bounds a 3-ball in M.

irreducible =⇒ prime

prime =⇒ irreducible or S1 × S2
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PRIME AND IRREDUCIBLE 3-MANIFOLDS

Example of irreducible 3-manifolds:
▶ S3 (Alexander Theorem)
▶ Lens spaces L(p, q)
▶ Knot complements S3 − n(K) and most of their Dehn fillings
▶ Surface bundles over S1 not S1 × S2, e.g. mapping torus
▶ Seifert manifolds, except S1 × S2 and RP3#RP3

Theorem (Epstein)

A 3-manifold M is Seifert fibered if and only if it is foliated by S1.

One may interpret “foliated by S1” as “a disjoint union of circles”.
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PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)
Every 3-manifold M with no spherical boundary components can be
“uniquely” written as

M = M1# . . . #Mn,

where Mi’s are prime. In particular,

π1(M) = π1(M1) ∗ · · · ∗ π1(Mn).

Corollary
Let M be closed. If π1(M) is finite, then M is irreducible.
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Prime Decomposition Theorem (Knerser, Milnor)
Every 3-manifold M with no spherical boundary components can be
“uniquely” written as

M = M1# . . . #Mn,

where Mi’s are prime. In particular,

π1(M) = π1(M1) ∗ · · · ∗ π1(Mn).

Kneser’s Conjecture (Stallings)
If π1(M) = G1 ∗ G2, then there is a connected sum decomposition
M = M1#M2 with π1(Mi) = Gi. In particular, M is not irreducible.
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RIGIDITY

In dimension 3, algebra almost “determines” geometry and topology.

Theorem
Let M1, M2 be closed 3-manifolds, not lens spaces. If M1 is prime and
π1(M1) = π1(M2), then M1 = M2.

One may compare it with the Mostow rigidity theorem.

Theorem (Mostow, Prasad, Marden)
If two hyperbolic 3-manifolds with finite volume have isomorphic
fundamental groups, they are isometric.

This theorem implies in particular that the geometry of finite-volume
hyperbolic 3-manifolds is determined by their topology.
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SPHERE THEOREM

Here is a powerful tool.

Sphere Theorem (Papakyriakopoulos)
Let M be a 3-manifold. If π2(M) is not trivial, then there is an
embedded 2-sphere S2 ↪→ M representing a non-trivial element in
π2(M). In particular, M is reducible.

With some work, we see the sphere theorem implies the following.

Theorem

Let M be a 3-manifold and M̃ → M be a covering. Then M is
irreducible if and only if M̃ is irreducible.
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SPHERE THEOREM

Corollary
If M is an irreducible 3-manifold, then

▶ π2(M) is trivial;

▶ π1(M) is finite if and only if π3(M) is non-trivial; in particular,
M = B3 or M is closed;

▶ π1(M) is infinite if and only if π3(M) is trivial; in this case, π1(M) is
torsion-free and M is aspherical, and if M is closed, M is K(π, 1).

Sketch of proof.

The universal cover M̃ has the same higher homotopy groups πn as M for
n ⩾ 2. Also note that π1(M) is infinite if and only if M̃ is non-compact. The
conclusions follow from the Hurewicz theorem applied to M̃.
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DEFICIENCY OF 3-MANIFOLD GROUPS

Corollary
If M is closed and irreducible, then def(π1(M)) = 0.

Proof.
It remains to see def(π1(M)) ⩽ 0. It is clearly true if π1(M) is finite.
If π1(M) is infinite, then the previous corollary tells us that M is the
classifying space of π1(M). Hence, Hk(π1(M)) = Hk(M) and so
b2(π1(M)) = b2(M) = b1(M) = b1(π1(M)) by duality theorems.

Corollary
The possible abelian fundamental groups of a closed 3-manifold are
π1(S3) = 1,π1(S1 × S2) = Z,π1(T3) = Z3 and π1(L(p, q)) = Z/pZ.
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INCOMPRESSIBLE SURFACE

Recall that to study an arbitrary 3-manifold, we cut it into irreducible
pieces along spheres. It turns out irreducible 3-manifolds can be
further decomposed.

Definition
Let S ⊂ M be a properly embedded surface, i.e. ∂S ⊂ ∂M. We say S
is incompressible if the map π1(S) → π1(M) induced by inclusion is
injective and S does not bound a 3-ball.

Loop Theorem (Papakyriakopoulos)
Let M be a 3-manifold and F ⊂ ∂M is a boundary component. If the
induced homomorphism π1(F) → π1(M) is not injective, then there
is a proper embedding g : (D2,∂D2) → (M,∂M) such that g(∂D2)
represents a non-trivial element in ker(π1(F) → π1(M)).
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LOOP THEOREM

Corollary
Let M be a 3-manifold. There exist compact 3-manifolds N1, . . . , Nm

whose boundary components are incompressible and a free group F
such that π1(M) = π1(N1) ∗ · · · ∗ π1(Nm) ∗ F.

Sketch of proof.
Cut N along the disks obtained by the Loop Theorem.

Corollary
The fundamental group π1(M) is infinite cyclic if and only if
M = S1 × S2 or M = S1 × D2.
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JSJ DECOMPOSITION

JSJ Decomposition Theorem (Jaco-Shalen, Johannson)
Let M be an irreducible 3-manifold with empty or toroidal boundary.
There exists a (possibly empty) collection of disjointly embedded
incompressible tori T1, . . . , Tm such that each component of M cut
along T1 ∪ · · · ∪ Tm is atoroidal or Seifert fibered. Any such collection
of tori with a minimal number of components is unique up to isotopy.

Recall that a 3-manifold is Seifert fibered if it is foliated by circles.
And a 3-manifold N is atoroidal if any map T → N from a torus T to
N which induces a monomorphism π1(T) → π1(N) can be
homotoped into the boundary of N. We can say something more about
the atoroidal piece.
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GEOMETRIZATION THEOREM

We say a 3-manifold is spherical, resp. hyperbolic, if it admits a
complete metric of constant curvature +1, resp. −1.

Elliptization Theorem
Every closed 3-manifold with finite fundamental group is spherical.

Recall that a closed 3-manifold M with finite fundamental group has
universal cover S3. Hence π1(M) is a finite subgroup of SO(4).

Hyperbolization Theorem
Let N be an irreducible 3-manifold with empty or toroidal boundary.
Suppose that N is atoroidal and not homeomorphic to S1 × D2, T2 × I,
or K×̃I. If π1(N) is infinite, then N is hyperbolic.
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GEOMETRIZATION THEOREM

Geometrization Theorem
Let M be an irreducible 3-manifold with empty or toroidal boundary. There
exists a (possibly empty) collection of disjointly embedded incompressible
tori T1, . . . , Tm in M such that each component of M cut along T1 ∪ · · · ∪ Tm

is hyperbolic or Seifert fibered. Furthermore, any such collection of tori with
a minimal number of components is unique up to isotopy.

Proof.
This is a direct consequence of the JSJ-Decomposition Theorem with the
Elliptization Theorem and the Hyperbolization Theorem and the
aforementioned facts that spherical 3-manifolds as well as S1 × D2, T2 × I,
and K×̃I are Seifert fibered, and that hyperbolic 3-manifolds are
atoroidal.

This theorem can be further developed into the Thurston’s geometrization
conjecture (now a theorem).
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GEOMETRIZATION THEOREM

There are many consequences (and/or side products) of the Thurston’s
geometrization conjecture. Here is one of them.

Theorem
Let M be an irreducible 3-manifold with empty or toroidal boundary.
Suppose π1(M) = A × B where A is infinite and B is non-trivial. Then
M = S1 × Σ where Σ is a surface.

Note that a free product of non-trivial groups is never a direct product.
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COHERENCE

A group is called coherent if each of its finitely generated subgroups
is finitely presented.

For example, F2 × F2 is not coherent. For n ̸= 3, SL(n,Z) is known
to be coherent; for n = 3, it is currently unknown.

Compact Core Theorem (Scott)
If Y is a 3-manifold such that π1(Y) is finitely generated, then Y has a
compact submanifold M such that the induced map π1(M) → π1(Y)
is an isomorphism.

Corollary
Every 3-manifold group is coherent.
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LINEARITY

Let R be a commutative ring with unity. We say that G is linear over R
if there exists an embedding G → GL(n, R) for some n.

An irreducible 3-manifold M with empty or toroidal boundary
▶ is Seifert fibered;

▶ fundamental groups of Seifert fibered manifolds are linear over Z.
▶ is hyperbolic;

▶ π1(M) admits a faithful representation π1(M) → PSL(2,C),
which lifts to a faithful representation π1(M) → SL(2,C).

▶ admits an incompressible torus.

Conjecture (Thurston)
All 3-manifold groups are linear.
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RESIDUALLY FINITENESS

A group G is called residually finite if for every g ∈ G \ {1}, there is a
finite group H and a homomorphism f : G → H such that f (g) is
non-trivial.

The Baumslag-Solitar group BS(2, 3) is not residually finite. The
infinite dihedral group is not residually finite either.

Theorem (Mal’cev-Selberg)
Finitely generated linear groups are residually finite.

Theorem (Hempel)
All 3-manifold group are residually finite.
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