3-Manifold Groups ABC

Junyu Lu

University of Manitoba

Fall 2024

Algebra is the offer made by the devil to the mathematician. The devil says: "I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine."

— Michael Atiyah

3-manifold group $=$ the fundamental group of a 3-manifold

Manifolds are always assumed to be connected, compact and oriented/orientable, unless otherwise stated.

3-manifold group $=$ the fundamental group of a 3-manifold

Manifolds are always assumed to be connected, compact and oriented/orientable, unless otherwise stated.

In dimension 3, algebra almost "determines" geometry and topology.

Poincaré Conjecture (Perelman, Thurston, etc.)

Every 3-dimensional manifold which is closed, connected, and has trivial fundamental group, is homeomorphic to *S* 3 .

Definition

Let $G = \langle g_1, \ldots, g_n | r_1, \ldots, r_k \rangle$ be a finitely presented group. The deficiency of the presentation is defined to be $n - k$. The deficiency def(*G*) of *G* is the maximal deficiency of all possible presentations.

Definition

Let $G = \langle g_1, \ldots, g_n | r_1, \ldots, r_k \rangle$ be a finitely presented group. The deficiency of the presentation is defined to be $n - k$. The deficiency $\text{def}(G)$ of *G* is the maximal deficiency of all possible presentations.

Some classical results from group (co)homology:

Given a finite presentation $1 \rightarrow R \rightarrow F_n \rightarrow G \rightarrow 1$ for *G*,

$$
\blacktriangleright H_1(G) = G/[G, G] = F_n/[F_n, F_n]R,
$$

$$
\blacktriangleright H_2(G) = (R \cap [F_n, F_n])/[R, F_n],
$$

$$
\blacktriangleright \ \det(G) \leqslant b_1(G) - b_2(G).
$$

 $def(G) = max{\# generators -\# relations in a finite presentation}$ $\leqslant b_1(G) - b_2(G)$

Examples

$$
\blacktriangleright \ \det(F_n)=n.
$$

- \blacktriangleright def(\mathbb{Z}^2) = 1, def(\mathbb{Z}^3) = 0 and def(\mathbb{Z}^n) < 0 for $n \ge 4$.
- \blacktriangleright $|G| < \infty \Longrightarrow$ def $(G) \leq 0$, for otherwise the abelianization is infinite.
- \blacktriangleright def($\pi_1(\Sigma_g)$) = 2*g* − 1 with the canonical presentation.
- \blacktriangleright The only finitely generated abelian groups with def(*G*) = 0 are $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z}^3 .

Handlebody $H_g = B^3$ with *g* copies $I \times D^2$ attached along $(\partial I) \times D^2 \rightarrow \partial B_3$

 $\partial H_g = \Sigma_g$ surface of genus *g*

HEEGAARD SPLITTING

Definition

A Heegaard splitting of a closed 3-manifold *M* is a decomposition

M = *H*₁ ∪ *H*₂

such that

 \blacktriangleright *H*₁, *H*₂ are handlebodies;

$$
\blacktriangleright \; \partial H_1 = \partial H_2 = H_1 \cap H_2.
$$

HEEGAARD SPLITTING

Definition

A Heegaard splitting of a closed 3-manifold *M* is a decomposition

 $M = H_1 \cup H_2$

such that

 \blacktriangleright *H*₁, *H*₂ are handlebodies;

$$
\blacktriangleright \; \partial H_1 = \partial H_2 = H_1 \cap H_2.
$$

Example

- \triangleright *S*³ admits a Heegaard splitting with $H_1 = H_2 = B^3$ trivially.
- \blacktriangleright *S*³ admits a Heegaard splitting with $H_1 = H_2 = S^1 \times D^2$.

Theorem (Moise, etc.)

A topological 3-manifold admits precisely one smooth structure (up to diffeomorphism) and precisely one piecewise structure (up to piecewise-linear homeomorphism).

In other words, every 3-manifold can be triangulated.

Theorem (Moise, etc.)

A topological 3-manifold admits precisely one smooth structure (up to diffeomorphism) and precisely one piecewise structure (up to piecewise-linear homeomorphism).

In other words, every 3-manifold can be triangulated.

Theorem

Every closed 3-manifold admits a Heegaard splitting.

Sketch of proof.

Triangulate *M*. *H*₁ is the closure of the regular neighbourhood of 1-skeleton and H_2 is the closure of the complement.

Apply the van Kampen theorem to $M = H_1 \cup H_2$:

$$
\pi_1(M) = \pi_1(H_1) *_{\pi_1(\Sigma_g)} \pi_1(H_2)
$$

= $\langle x_1, ..., x_g, y_1, ..., y_g | f_*(a_i) = g_*(a_i), i = 1, ..., 2g \rangle$

\n- $$
\pi_1(H_1) = \langle x_1, \ldots, x_g \rangle
$$
,
\n- $\pi_1(H_2) = \langle y_1, \ldots, y_g \rangle$,
\n- $\pi_1(\Sigma_g) = \langle a_1, \ldots, a_{2g} \mid \prod_{i=1}^g [a_{2i-1}, a_{2i}] \rangle$,
\n- f_* is induced by $f : \Sigma_g \to \partial H_1$,
\n

$$
\bullet \ \ g_* \ \text{is induced by} \ g: \Sigma_g \to \partial H_2.
$$

Apply the van Kampen theorem to $M = H_1 \cup H_2$:

$$
\pi_1(M) = \pi_1(H_1) *_{\pi_1(\Sigma_g)} \pi_1(H_2)
$$

= $\langle x_1, ..., x_g, y_1, ..., y_g | f_*(a_i) = g_*(a_i), i = 1, ..., 2g \rangle$

\n- \n
$$
\pi_1(H_1) = \langle x_1, \ldots, x_g \rangle
$$
\n
\n- \n $\pi_1(H_2) = \langle y_1, \ldots, y_g \rangle$ \n
\n- \n $\pi_1(\Sigma_g) = \langle a_1, \ldots, a_{2g} \mid \prod_{i=1}^g [a_{2i-1}, a_{2i}] \rangle$ \n
\n- \n f_* is induced by $f : \Sigma_g \to \partial H_1$,\n
\n

$$
\bullet \ \ g_* \ \text{is induced by} \ g: \Sigma_g \to \partial H_2.
$$

Corollary

Let M be a closed 3-manifold. Then $\det(\pi_1(M)) \geq 0$.

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Connected sum

$$
M_1 \# M_2 := (M_1 \setminus B_1) \cup_f (M_2 \setminus B_2)
$$

 \blacktriangleright *B_i* = 3-balls

 \triangleright *f* = an orientation-reversing homeomorphism between ∂B_1 and ∂*B*²

Definition

A 3-manifold *M* is called prime if $M = M_1 \text{#} M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Definition

A 3-manifold *M* is called <u>prime</u> if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.

Definition

A 3-manifold *M* is called irreducible if every embedded 2-sphere in *M* bounds a 3-ball in *M*.

> irreducible \implies prime prime \implies irreducible or $S^1 \times S^2$

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Example of irreducible 3-manifolds:

- \blacktriangleright S^3 (Alexander Theorem)
- \blacktriangleright Lens spaces $L(p,q)$
- ▶ Knot complements $\overline{S^3 n(K)}$ and most of their Dehn fillings
- Surface bundles over S^1 not $S^1 \times S^2$, e.g. mapping torus
- \blacktriangleright Seifert manifolds, except $S^1 \times S^2$ and $\mathbb{R}P^3 \# \mathbb{R}P^3$

Theorem (Epstein)

*A 3-manifold M is Seifert fibered if and only if it is foliated by S*¹ *.*

One may interpret "foliated by $S¹$ " as "a disjoint union of circles".

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold *M* with no spherical boundary components can be "uniquely" written as

$$
M=M_1\#\dots\#M_n,
$$

where *Mi*'s are prime. In particular,

$$
\pi_1(M)=\pi_1(M_1)*\cdots*\pi_1(M_n).
$$

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold *M* with no spherical boundary components can be "uniquely" written as

$$
M=M_1\#\dots\#M_n,
$$

where M_i 's are prime. In particular,

$$
\pi_1(M)=\pi_1(M_1)*\cdots*\pi_1(M_n).
$$

Corollary

Let M be closed. If $\pi_1(M)$ *is finite, then M is irreducible.*

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold *M* with no spherical boundary components can be "uniquely" written as

$$
M=M_1\#\dots\#M_n,
$$

where M_i 's are prime. In particular,

$$
\pi_1(M)=\pi_1(M_1)*\cdots*\pi_1(M_n).
$$

Kneser's Conjecture (Stallings)

If $\pi_1(M) = G_1 * G_2$, then there is a connected sum decomposition $M = M_1 \# M_2$ with $\pi_1(M_i) = G_i$. In particular, *M* is not irreducible.

RIGIDITY

In dimension 3, algebra almost "determines" geometry and topology.

Theorem

*Let M*1, *M*² *be closed 3-manifolds, not lens spaces. If M*¹ *is prime and* $\pi_1(M_1) = \pi_1(M_2)$, then $M_1 = M_2$.

One may compare it with the Mostow rigidity theorem.

Theorem (Mostow, Prasad, Marden)

If two hyperbolic 3-manifolds with finite volume have isomorphic fundamental groups, they are isometric.

This theorem implies in particular that the geometry of finite-volume hyperbolic 3-manifolds is determined by their topology.

Here is a powerful tool.

Sphere Theorem (Papakyriakopoulos)

Let *M* be a 3-manifold. If $\pi_2(M)$ is not trivial, then there is an embedded 2-sphere $S^2 \hookrightarrow M$ representing a non-trivial element in $\pi_2(M)$. In particular, *M* is reducible.

With some work, we see the sphere theorem implies the following.

Theorem

Let M be a 3-manifold and $\widetilde{M} \rightarrow M$ *be a covering. Then M is irreducible if and only if* \widetilde{M} *is irreducible.*

SPHERE THEOREM

Corollary

If M is an irreducible 3-manifold, then

- $\blacktriangleright \pi_2(M)$ *is trivial*;
- $\blacktriangleright \pi_1(M)$ *is finite if and only if* $\pi_3(M)$ *is non-trivial; in particular,* $M = B³$ *or M* is closed;
- $\blacktriangleright \pi_1(M)$ *is infinite if and only if* $\pi_3(M)$ *is trivial; in this case,* $\pi_1(M)$ *is torsion-free and M is aspherical, and if M is closed, M is* $K(\pi, 1)$ *.*

Sketch of proof.

The universal cover \widetilde{M} has the same higher homotopy groups π_n as M for *n* \ge 2. Also note that $\pi_1(M)$ is infinite if and only if *M* is non-compact. The conclusions follow from the Hurewicz theorem annual to \widetilde{M} conclusions follow from the Hurewicz theorem applied to \dot{M} .

DEFICIENCY OF 3-MANIFOLD GROUPS

Corollary

If M is closed and irreducible, then $\det(\pi_1(M)) = 0$ *.*

Proof.

It remains to see def($\pi_1(M)$) ≤ 0 . It is clearly true if $\pi_1(M)$ is finite. If $\pi_1(M)$ is infinite, then the previous corollary tells us that M is the classifying space of $\pi_1(M)$. Hence, $H_k(\pi_1(M)) = H_k(M)$ and so $b_2(\pi_1(M)) = b_2(M) = b_1(M) = b_1(\pi_1(M))$ by duality theorems. \Box

DEFICIENCY OF 3-MANIFOLD GROUPS

Corollary

If M is closed and irreducible, then $\det(\pi_1(M)) = 0$ *.*

Proof.

It remains to see def($\pi_1(M)$) ≤ 0 . It is clearly true if $\pi_1(M)$ is finite. If $\pi_1(M)$ is infinite, then the previous corollary tells us that M is the classifying space of $\pi_1(M)$. Hence, $H_k(\pi_1(M)) = H_k(M)$ and so $b_2(\pi_1(M)) = b_2(M) = b_1(M) = b_1(\pi_1(M))$ by duality theorems.

Corollary

The possible abelian fundamental groups of a closed 3-manifold are $\pi_1(S^3) = 1$, $\pi_1(S^1 \times S^2) = \mathbb{Z}$, $\pi_1(T^3) = \mathbb{Z}^3$ and $\pi_1(L(p, q)) = \mathbb{Z}/p\mathbb{Z}$. Recall that to study an arbitrary 3-manifold, we cut it into irreducible pieces along spheres. It turns out irreducible 3-manifolds can be further decomposed.

Definition

Let *S* ⊂ *M* be a properly embedded surface, i.e. ∂*S* ⊂ ∂*M*. We say *S* is incompressible if the map $\pi_1(S) \to \pi_1(M)$ induced by inclusion is injective and *S* does not bound a 3-ball.

Recall that to study an arbitrary 3-manifold, we cut it into irreducible pieces along spheres. It turns out irreducible 3-manifolds can be further decomposed.

Definition

Let *S* ⊂ *M* be a properly embedded surface, i.e. ∂*S* ⊂ ∂*M*. We say *S* is incompressible if the map $\pi_1(S) \to \pi_1(M)$ induced by inclusion is injective and *S* does not bound a 3-ball.

Loop Theorem (Papakyriakopoulos)

Let *M* be a 3-manifold and $F \subset \partial M$ is a boundary component. If the induced homomorphism $\pi_1(F) \to \pi_1(M)$ is not injective, then there is a proper embedding $g : (D^2, \partial D^2) \to (M, \partial M)$ such that $g(\partial D^2)$ represents a non-trivial element in ker($\pi_1(F) \to \pi_1(M)$).

Corollary

Let M be a 3-manifold. There exist compact 3-manifolds N_1, \ldots, N_m *whose boundary components are incompressible and a free group F such that* $\pi_1(M) = \pi_1(N_1) * \cdots * \pi_1(N_m) * F$.

Sketch of proof.

Cut *N* along the disks obtained by the Loop Theorem.

Corollary

*Let M be a 3-manifold. There exist compact 3-manifolds N*1, . . . ,*N^m whose boundary components are incompressible and a free group F such that* $\pi_1(M) = \pi_1(N_1) * \cdots * \pi_1(N_m) * F$.

Sketch of proof.

Cut *N* along the disks obtained by the Loop Theorem.

Corollary

The fundamental group $\pi_1(M)$ *is infinite cyclic if and only if* $M = S^1 \times S^2 \text{ or } M = S^1 \times D^2.$

JSJ Decomposition Theorem (Jaco-Shalen, Johannson)

Let *M* be an irreducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty) collection of disjointly embedded incompressible tori T_1, \ldots, T_m such that each component of *M* cut along $T_1 \cup \cdots \cup T_m$ is atoroidal or Seifert fibered. Any such collection of tori with a minimal number of components is unique up to isotopy.

Recall that a 3-manifold is Seifert fibered if it is foliated by circles. And a 3-manifold *N* is atoroidal if any map $T \rightarrow N$ from a torus *T* to *N* which induces a monomorphism $\pi_1(T) \to \pi_1(N)$ can be homotoped into the boundary of *N*. We can say something more about the atoroidal piece.

We say a 3-manifold is spherical, resp. hyperbolic, if it admits a complete metric of constant curvature $+1$, resp. -1 .

Elliptization Theorem

Every closed 3-manifold with finite fundamental group is spherical.

Recall that a closed 3-manifold *M* with finite fundamental group has universal cover S^3 . Hence $\pi_1(M)$ is a finite subgroup of SO(4).

Hyperbolization Theorem

Let *N* be an irreducible 3-manifold with empty or toroidal boundary. Suppose that *N* is atoroidal and not homeomorphic to $S^1 \times D^2$, $T^2 \times I$, or $K\tilde{\times}I$. If $\pi_1(N)$ is infinite, then *N* is hyperbolic.

Geometrization Theorem

Let *M* be an irreducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty) collection of disjointly embedded incompressible tori T_1, \ldots, T_m in *M* such that each component of *M* cut along $T_1 \cup \cdots \cup T_m$ is hyperbolic or Seifert fibered. Furthermore, any such collection of tori with a minimal number of components is unique up to isotopy.

Proof.

This is a direct consequence of the JSJ-Decomposition Theorem with the Elliptization Theorem and the Hyperbolization Theorem and the aforementioned facts that spherical 3-manifolds as well as $S^1 \times D^2$, $T^2 \times I$, and $K\tilde{\times}I$ are Seifert fibered, and that hyperbolic 3-manifolds are atoroidal. \Box

This theorem can be further developed into the Thurston's geometrization conjecture (now a theorem).

There are many consequences (and/or side products) of the Thurston's geometrization conjecture. Here is one of them.

Theorem

Let M be an irreducible 3-manifold with empty or toroidal boundary. Suppose $\pi_1(M) = A \times B$ where A is infinite and B is non-trivial. Then $M = S^1 \times \Sigma$ *where* Σ *is a surface.*

Note that a free product of non-trivial groups is never a direct product.

A group is called coherent if each of its finitely generated subgroups is finitely presented.

For example, $F_2 \times F_2$ is not coherent. For $n \neq 3$, $SL(n, \mathbb{Z})$ is known to be coherent; for $n = 3$, it is currently unknown.

A group is called coherent if each of its finitely generated subgroups is finitely presented.

For example, $F_2 \times F_2$ is not coherent. For $n \neq 3$, $SL(n, \mathbb{Z})$ is known to be coherent; for $n = 3$, it is currently unknown.

Compact Core Theorem (Scott)

If *Y* is a 3-manifold such that $\pi_1(Y)$ is finitely generated, then *Y* has a compact submanifold *M* such that the induced map $\pi_1(M) \to \pi_1(Y)$ is an isomorphism.

Corollary

Every 3-manifold group is coherent.

Let *R* be a commutative ring with unity. We say that *G* is linear over *R* if there exists an embedding $G \to GL(n, R)$ for some *n*.

An irreducible 3-manifold *M* with empty or toroidal boundary

- \blacktriangleright is Seifert fibered;
	- \blacktriangleright fundamental groups of Seifert fibered manifolds are linear over \mathbb{Z} .

\blacktriangleright is hyperbolic;

- $\blacktriangleright \pi_1(M)$ admits a faithful representation $\pi_1(M) \to \text{PSL}(2,\mathbb{C}),$ which lifts to a faithful representation $\pi_1(M) \to SL(2, \mathbb{C})$.
- ▶ admits an incompressible torus.

Conjecture (Thurston)

All 3-manifold groups are linear.

A group *G* is called residually finite if for every $g \in G \setminus \{1\}$, there is a finite group *H* and a homomorphism $f : G \to H$ such that $f(g)$ is non-trivial.

The Baumslag-Solitar group *BS*(2, 3) is not residually finite. The infinite dihedral group is not residually finite either.

A group *G* is called residually finite if for every $g \in G \setminus \{1\}$, there is a finite group *H* and a homomorphism $f : G \to H$ such that $f(g)$ is non-trivial.

The Baumslag-Solitar group *BS*(2, 3) is not residually finite. The infinite dihedral group is not residually finite either.

Theorem (Mal'cev-Selberg)

Finitely generated linear groups are residually finite.

Theorem (Hempel)

All 3-manifold group are residually finite.