3-Manifold Groups ABC

Junyu Lu

University of Manitoba

Fall 2024

PRELUDE

Algebra is the offer made by the devil to the mathematician. The devil says: "I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine."

— Michael Atiyah

PRELUDE

3-manifold group = the fundamental group of a 3-manifold

Manifolds are always assumed to be connected, compact and oriented/orientable, unless otherwise stated.

PRELUDE

3-manifold group = the fundamental group of a 3-manifold

Manifolds are always assumed to be connected, compact and oriented/orientable, unless otherwise stated.

In dimension 3, algebra almost "determines" geometry and topology.

Poincaré Conjecture (Perelman, Thurston, etc.)

Every 3-dimensional manifold which is closed, connected, and has trivial fundamental group, is homeomorphic to S^3 .

DEFICIENCY

Definition

Let $G = \langle g_1, \dots, g_n \mid r_1, \dots, r_k \rangle$ be a finitely presented group. The <u>deficiency of the presentation</u> is defined to be n - k. The <u>deficiency</u> def(G) of G is the maximal deficiency of all possible presentations.

DEFICIENCY

Definition

Let $G = \langle g_1, \dots, g_n \mid r_1, \dots, r_k \rangle$ be a finitely presented group. The <u>deficiency of the presentation</u> is defined to be n - k. The <u>deficiency def</u>(G) of G is the maximal deficiency of all possible presentations.

Some classical results from group (co)homology:

Given a finite presentation $1 \to R \to F_n \to G \to 1$ for G,

- ► $H_1(G) = G/[G, G] = F_n/[F_n, F_n]R$,
- $\blacktriangleright H_2(G) = (R \cap [F_n, F_n])/[R, F_n],$
- ▶ $def(G) \leq b_1(G) b_2(G)$.

DEFICIENCY

$$def(G) = max\{\# \text{ generators } -\# \text{ relators in a finite presentation}\}$$

 $\leq b_1(G) - b_2(G)$

Examples

- ightharpoonup def $(F_n) = n$.
- ▶ $def(\mathbb{Z}^2) = 1$, $def(\mathbb{Z}^3) = 0$ and $def(\mathbb{Z}^n) < 0$ for $n \ge 4$.
- ▶ $|G| < \infty \Longrightarrow def(G) \le 0$, for otherwise the abelianization is infinite.
- ▶ $def(\pi_1(\Sigma_g)) = 2g 1$ with the canonical presentation.
- ► The only finitely generated abelian groups with def(G) = 0 are $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z}^3 .

Handlebody
$$H_g = B^3$$
 with g copies $I \times D^2$ attached along $(\partial I) \times D^2 \to \partial B_3$

 $\partial H_g = \Sigma_g$ surface of genus g

Definition

A <u>Heegaard splitting</u> of a closed 3-manifold M is a decomposition

$$M = H_1 \cup H_2$$

such that

- $ightharpoonup H_1, H_2$ are handlebodies;
- $\blacktriangleright \ \partial H_1 = \partial H_2 = H_1 \cap H_2.$

Definition

A <u>Heegaard splitting</u> of a closed 3-manifold M is a decomposition

$$M = H_1 \cup H_2$$

such that

- $ightharpoonup H_1, H_2$ are handlebodies;
- $\blacktriangleright \ \partial H_1 = \partial H_2 = H_1 \cap H_2.$

Example

- ► S^3 admits a Heegaard splitting with $H_1 = H_2 = B^3$ trivially.
- ► S^3 admits a Heegaard splitting with $H_1 = H_2 = S^1 \times D^2$.

Theorem (Moise, etc.)

A topological 3-manifold admits precisely one smooth structure (up to diffeomorphism) and precisely one piecewise structure (up to piecewise-linear homeomorphism).

In other words, every 3-manifold can be triangulated.

Theorem (Moise, etc.)

A topological 3-manifold admits precisely one smooth structure (up to diffeomorphism) and precisely one piecewise structure (up to piecewise-linear homeomorphism).

In other words, every 3-manifold can be triangulated.

Theorem

Every closed 3-manifold admits a Heegaard splitting.

Sketch of proof.

Triangulate M. H_1 is the closure of the regular neighbourhood of 1-skeleton and H_2 is the closure of the complement.

Apply the van Kampen theorem to $M = H_1 \cup H_2$:

$$\pi_1(M) = \pi_1(H_1) *_{\pi_1(\Sigma_g)} \pi_1(H_2)$$

= $\langle x_1, \dots, x_g, y_1, \dots, y_g | f_*(a_i) = g_*(a_i), i = 1, \dots, 2g \rangle$

- $\blacktriangleright \ \pi_1(H_1) = \langle x_1, \ldots, x_g \rangle,$
- $\blacktriangleright \ \pi_1(H_2) = \langle y_1, \ldots, y_g \rangle,$
- $\blacktriangleright \ \pi_1(\Sigma_g) = \langle a_1, \ldots, a_{2g} \mid \prod_{i=1}^g [a_{2i-1}, a_{2i}] \rangle,$
- ► f_* is induced by $f: \Sigma_g \to \partial H_1$,
- ▶ g_* is induced by $g: \Sigma_g \to \partial H_2$.

Apply the van Kampen theorem to $M = H_1 \cup H_2$:

$$\pi_1(M) = \pi_1(H_1) *_{\pi_1(\Sigma_g)} \pi_1(H_2)$$

= $\langle x_1, \dots, x_g, y_1, \dots, y_g | f_*(a_i) = g_*(a_i), i = 1, \dots, 2g \rangle$

- $\blacktriangleright \ \pi_1(H_1) = \langle x_1, \ldots, x_g \rangle,$
- $\blacktriangleright \ \pi_1(H_2) = \langle y_1, \ldots, y_g \rangle,$
- $\blacktriangleright \ \pi_1(\Sigma_g) = \langle a_1, \ldots, a_{2g} \mid \prod_{i=1}^g [a_{2i-1}, a_{2i}] \rangle,$
- ► f_* is induced by $f: \Sigma_g \to \partial H_1$,
- ▶ g_* is induced by $g: \Sigma_g \to \partial H_2$.

Corollary

Let M be a closed 3-manifold. Then $def(\pi_1(M)) \ge 0$.

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Connected sum

$$M_1 \# M_2 := (M_1 \setminus B_1) \cup_f (M_2 \setminus B_2)$$

- $ightharpoonup B_i = 3$ -balls
- ► f = an orientation-reversing homeomorphism between ∂B_1 and ∂B_2

Definition

A 3-manifold M is called <u>prime</u> if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Definition

A 3-manifold M is called <u>prime</u> if $M = M_1 \# M_2$ implies $M_1 = S^3$ or $M_2 = S^3$.

Definition

A 3-manifold *M* is called <u>irreducible</u> if every embedded 2-sphere in *M* bounds a 3-ball in *M*.

$$\begin{array}{ccc} \text{irreducible} & \Longrightarrow & \text{prime} \\ & \text{prime} & \Longrightarrow & \text{irreducible or } S^1 \times S^2 \end{array}$$

PRIME AND IRREDUCIBLE 3-MANIFOLDS

Example of irreducible 3-manifolds:

- $ightharpoonup S^3$ (Alexander Theorem)
- ▶ Lens spaces L(p,q)
- ► Knot complements $\overline{S^3 n(K)}$ and most of their Dehn fillings
- ► Surface bundles over S^1 not $S^1 \times S^2$, e.g. mapping torus
- ► Seifert manifolds, except $S^1 \times S^2$ and $\mathbb{R}P^3 \# \mathbb{R}P^3$

Theorem (Epstein)

A 3-manifold M is Seifert fibered if and only if it is foliated by S^1 .

One may interpret "foliated by S^1 " as "a disjoint union of circles".

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold M with no spherical boundary components can be "uniquely" written as

$$M = M_1 \# \dots \# M_n$$
,

where M_i 's are prime. In particular,

$$\pi_1(M) = \pi_1(M_1) * \cdots * \pi_1(M_n).$$

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold M with no spherical boundary components can be "uniquely" written as

$$M = M_1 \# \dots \# M_n$$
,

where M_i 's are prime. In particular,

$$\pi_1(M) = \pi_1(M_1) * \cdots * \pi_1(M_n).$$

Corollary

Let M be closed. If $\pi_1(M)$ *is finite, then M is irreducible.*

PRIME DECOMPOSITION THEOREM

Prime Decomposition Theorem (Knerser, Milnor)

Every 3-manifold M with no spherical boundary components can be "uniquely" written as

$$M = M_1 \# \dots \# M_n$$
,

where M_i 's are prime. In particular,

$$\pi_1(M) = \pi_1(M_1) * \cdots * \pi_1(M_n).$$

Kneser's Conjecture (Stallings)

If $\pi_1(M) = G_1 * G_2$, then there is a connected sum decomposition $M = M_1 \# M_2$ with $\pi_1(M_i) = G_i$. In particular, M is not irreducible.

RIGIDITY

In dimension 3, algebra almost "determines" geometry and topology.

Theorem

Let M_1 , M_2 be closed 3-manifolds, not lens spaces. If M_1 is prime and $\pi_1(M_1) = \pi_1(M_2)$, then $M_1 = M_2$.

One may compare it with the Mostow rigidity theorem.

Theorem (Mostow, Prasad, Marden)

If two hyperbolic 3-manifolds with finite volume have isomorphic fundamental groups, they are isometric.

This theorem implies in particular that the geometry of finite-volume hyperbolic 3-manifolds is determined by their topology.

SPHERE THEOREM

Here is a powerful tool.

Sphere Theorem (Papakyriakopoulos)

Let M be a 3-manifold. If $\pi_2(M)$ is not trivial, then there is an embedded 2-sphere $S^2 \hookrightarrow M$ representing a non-trivial element in $\pi_2(M)$. In particular, M is reducible.

With some work, we see the sphere theorem implies the following.

Theorem

Let M be a 3-manifold and $\widetilde{M} \to M$ be a covering. Then M is irreducible if and only if \widetilde{M} is irreducible.

SPHERE THEOREM

Corollary

If M is an irreducible 3-manifold, then

- \blacktriangleright $\pi_2(M)$ is trivial;
- \blacktriangleright $\pi_1(M)$ is finite if and only if $\pi_3(M)$ is non-trivial; in particular, $M = B^3$ or M is closed;
- \blacktriangleright $\pi_1(M)$ is infinite if and only if $\pi_3(M)$ is trivial; in this case, $\pi_1(M)$ is torsion-free and M is aspherical, and if M is closed, M is $K(\pi, 1)$.

Sketch of proof.

The universal cover \widetilde{M} has the same higher homotopy groups π_n as M for $n \ge 2$. Also note that $\pi_1(M)$ is infinite if and only if \widetilde{M} is non-compact. The conclusions follow from the Hurewicz theorem applied to \widetilde{M} .

DEFICIENCY OF 3-MANIFOLD GROUPS

Corollary

If M is closed and irreducible, then $def(\pi_1(M)) = 0$.

Proof.

It remains to see $\operatorname{def}(\pi_1(M)) \leq 0$. It is clearly true if $\pi_1(M)$ is finite. If $\pi_1(M)$ is infinite, then the previous corollary tells us that M is the classifying space of $\pi_1(M)$. Hence, $H_k(\pi_1(M)) = H_k(M)$ and so $b_2(\pi_1(M)) = b_2(M) = b_1(M) = b_1(\pi_1(M))$ by duality theorems.

DEFICIENCY OF 3-MANIFOLD GROUPS

Corollary

If M is closed and irreducible, then $def(\pi_1(M)) = 0$.

Proof.

It remains to see $def(\pi_1(M)) \leq 0$. It is clearly true if $\pi_1(M)$ is finite. If $\pi_1(M)$ is infinite, then the previous corollary tells us that M is the classifying space of $\pi_1(M)$. Hence, $H_k(\pi_1(M)) = H_k(M)$ and so $b_2(\pi_1(M)) = b_2(M) = b_1(M) = b_1(\pi_1(M))$ by duality theorems.

Corollary

The possible abelian fundamental groups of a closed 3-manifold are $\pi_1(S^3) = 1, \pi_1(S^1 \times S^2) = \mathbb{Z}, \pi_1(T^3) = \mathbb{Z}^3$ and $\pi_1(L(p,q)) = \mathbb{Z}/p\mathbb{Z}$.

INCOMPRESSIBLE SURFACE

Recall that to study an arbitrary 3-manifold, we cut it into irreducible pieces along spheres. It turns out irreducible 3-manifolds can be further decomposed.

Definition

Let $S \subset M$ be a properly embedded surface, i.e. $\partial S \subset \partial M$. We say S is <u>incompressible</u> if the map $\pi_1(S) \to \pi_1(M)$ induced by inclusion is injective and S does not bound a 3-ball.

INCOMPRESSIBLE SURFACE

Recall that to study an arbitrary 3-manifold, we cut it into irreducible pieces along spheres. It turns out irreducible 3-manifolds can be further decomposed.

Definition

Let $S \subset M$ be a properly embedded surface, i.e. $\partial S \subset \partial M$. We say S is <u>incompressible</u> if the map $\pi_1(S) \to \pi_1(M)$ induced by inclusion is injective and S does not bound a 3-ball.

Loop Theorem (Papakyriakopoulos)

Let M be a 3-manifold and $F \subset \partial M$ is a boundary component. If the induced homomorphism $\pi_1(F) \to \pi_1(M)$ is not injective, then there is a proper embedding $g: (D^2, \partial D^2) \to (M, \partial M)$ such that $g(\partial D^2)$ represents a non-trivial element in $\ker(\pi_1(F) \to \pi_1(M))$.

LOOP THEOREM

Corollary

Let M be a 3-manifold. There exist compact 3-manifolds N_1, \ldots, N_m whose boundary components are incompressible and a free group F such that $\pi_1(M) = \pi_1(N_1) * \cdots * \pi_1(N_m) * F$.

Sketch of proof.

Cut *N* along the disks obtained by the Loop Theorem.

LOOP THEOREM

Corollary

Let M be a 3-manifold. There exist compact 3-manifolds N_1, \ldots, N_m whose boundary components are incompressible and a free group F such that $\pi_1(M) = \pi_1(N_1) * \cdots * \pi_1(N_m) * F$.

Sketch of proof.

Cut *N* along the disks obtained by the Loop Theorem.

Corollary

The fundamental group $\pi_1(M)$ is infinite cyclic if and only if $M = S^1 \times S^2$ or $M = S^1 \times D^2$.

JSJ DECOMPOSITION

JSJ Decomposition Theorem (Jaco-Shalen, Johannson)

Let M be an irreducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty) collection of disjointly embedded incompressible tori T_1, \ldots, T_m such that each component of M cut along $T_1 \cup \cdots \cup T_m$ is atoroidal or Seifert fibered. Any such collection of tori with a minimal number of components is unique up to isotopy.

Recall that a 3-manifold is Seifert fibered if it is foliated by circles. And a 3-manifold N is <u>atoroidal</u> if any map $T \to N$ from a torus T to N which induces a monomorphism $\pi_1(T) \to \pi_1(N)$ can be homotoped into the boundary of N. We can say something more about the atoroidal piece.

GEOMETRIZATION THEOREM

We say a 3-manifold is <u>spherical</u>, resp. <u>hyperbolic</u>, if it admits a complete metric of constant curvature +1, resp. -1.

Elliptization Theorem

Every closed 3-manifold with finite fundamental group is spherical.

Recall that a closed 3-manifold M with finite fundamental group has universal cover S^3 . Hence $\pi_1(M)$ is a finite subgroup of SO(4).

Hyperbolization Theorem

Let N be an irreducible 3-manifold with empty or toroidal boundary. Suppose that N is atoroidal and not homeomorphic to $S^1 \times D^2$, $T^2 \times I$, or $K \tilde{\times} I$. If $\pi_1(N)$ is infinite, then N is hyperbolic.

GEOMETRIZATION THEOREM

Geometrization Theorem

Let M be an irreducible 3-manifold with empty or toroidal boundary. There exists a (possibly empty) collection of disjointly embedded incompressible tori T_1, \ldots, T_m in M such that each component of M cut along $T_1 \cup \cdots \cup T_m$ is hyperbolic or Seifert fibered. Furthermore, any such collection of tori with a minimal number of components is unique up to isotopy.

Proof.

This is a direct consequence of the JSJ-Decomposition Theorem with the Elliptization Theorem and the Hyperbolization Theorem and the aforementioned facts that spherical 3-manifolds as well as $S^1 \times D^2$, $T^2 \times I$, and $K \times I$ are Seifert fibered, and that hyperbolic 3-manifolds are atoroidal.

This theorem can be further developed into the Thurston's geometrization conjecture (now a theorem).

GEOMETRIZATION THEOREM

There are many consequences (and/or side products) of the Thurston's geometrization conjecture. Here is one of them.

Theorem

Let M be an irreducible 3-manifold with empty or toroidal boundary. Suppose $\pi_1(M) = A \times B$ where A is infinite and B is non-trivial. Then $M = S^1 \times \Sigma$ where Σ is a surface.

Note that a free product of non-trivial groups is never a direct product.

COHERENCE

A group is called <u>coherent</u> if each of its finitely generated subgroups is finitely presented.

For example, $F_2 \times F_2$ is not coherent. For $n \neq 3$, $SL(n, \mathbb{Z})$ is known to be coherent; for n = 3, it is currently unknown.

COHERENCE

A group is called coherent if each of its finitely generated subgroups is finitely presented.

For example, $F_2 \times F_2$ is not coherent. For $n \neq 3$, $SL(n, \mathbb{Z})$ is known to be coherent; for n = 3, it is currently unknown.

Compact Core Theorem (Scott)

If Y is a 3-manifold such that $\pi_1(Y)$ is finitely generated, then Y has a compact submanifold M such that the induced map $\pi_1(M) \to \pi_1(Y)$ is an isomorphism.

Corollary

Every 3-manifold group is coherent.

LINEARITY

Let R be a commutative ring with unity. We say that G is linear over R if there exists an embedding $G \to GL(n, R)$ for some n.

An irreducible 3-manifold M with empty or toroidal boundary

- ▶ is Seifert fibered;
 - fundamental groups of Seifert fibered manifolds are linear over \mathbb{Z} .
- ▶ is hyperbolic;
 - \blacktriangleright $\pi_1(M)$ admits a faithful representation $\pi_1(M) \to PSL(2,\mathbb{C})$, which lifts to a faithful representation $\pi_1(M) \to SL(2,\mathbb{C})$.
- ► admits an incompressible torus.

Conjecture (Thurston)

All 3-manifold groups are linear.

RESIDUALLY FINITENESS

A group G is called <u>residually finite</u> if for every $g \in G \setminus \{1\}$, there is a finite group H and a homomorphism $f : G \to H$ such that f(g) is non-trivial.

The Baumslag-Solitar group BS(2,3) is not residually finite. The infinite dihedral group is not residually finite either.

RESIDUALLY FINITENESS

A group G is called <u>residually finite</u> if for every $g \in G \setminus \{1\}$, there is a finite group H and a homomorphism $f: G \to H$ such that f(g) is non-trivial.

The Baumslag-Solitar group BS(2,3) is not residually finite. The infinite dihedral group is not residually finite either.

Theorem (Mal'cev-Selberg)

Finitely generated linear groups are residually finite.

Theorem (Hempel)

All 3-manifold group are residually finite.