Math 3472
Analysis 3-Assignment 2.

Due March 17 in class.

Questions from textbook, pages 366, 384 and 385: 12.27, 13.2, 13.3, 13.5, 13.6. Also the following problems:

Question A: Consider the function

$$
F: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}
$$

given by $F(x, y, z)=x^{3} z^{2}-z^{3} y x$.

1. Explain why there are no neighbourhood U of $(0,0)$ and V of 0 such that there exists a function $z=g(x, y)$ defined for $(x, y) \in U$ and $z \in V$ and satisfying $F(x, y, g(x, y))=0$.
2. Explain why the equation is solvable for z as a function of (x, y) near the point $(1,1,1)$. Compute the partials $\partial z / \partial y$ and $\partial z / \partial x$ at this point from the partials of F.

Question B: Do the conditions $x y-x y^{2} z^{3}-z=3, x^{2}+y^{2}+z^{2}=6$ define y and z as functions of x in a neighborhood of the point $(x, y, z)=(1,-2,-1)$? If so, are these functions continuously differentiable in this neighborhood?

