Math 3322 Algebra 3, Assignment 3 Due February 26 at the start of class.

- 1. Prove that the following statements are equivalent:
 - (a) Every finite simple group of odd order is isomorphic to \mathbb{Z}_p for some prime p.
 - (b) Every finite group of odd order is solvable.

It turns out, in fact, that both of these statements are true. This result is called the Feit-Thompson theorem, a "simplified" version of the proof comprises two books.

- 2. Let $K \subset F$ be fields. Suppose that u is transcendental over K. Show that every element of K(u) which is not in K is transcendental over K.
- 3. Show that $x^3 2x 2$ is irreducible over \mathbb{Q} . Next, let θ denote any root of this polynomial. Then $\{1, \theta, \theta^2\}$ is a basis of $\mathbb{Q}(\theta)$ as a vector space over \mathbb{Q} . Calculate representations of $(1+\theta)(1+\theta+\theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ relative to this basis.
- 4. Show that the minimal polynomial for $\sqrt[6]{2}$ over $\mathbb{Q}(\sqrt{2})$ is $x^3 \sqrt{2}$. (Hint: Try finding relevant fields $K \subset E \subset F$ and using the formula [F:K] = [F:E][E:K].)
- 5. Prove that the subfields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ of \mathbb{C} are not isomorphic as fields, but that they are isomorphic as vector spaces over \mathbb{Q} .
- 6. Let E_1 and E_2 be subfields of F and X a subset of F. If every element of E_1 is algebraic over E_2 , then every element of $E_1(X)$ is algebraic over $E_2(X)$.

Hint: Show $E_1(X) \subset (E_2(X))(E_1)$ and use the following theorem:

Theorem 1. If F is an extension field of K and X is a subset of F such that F = K(X)and every element of X is algebraic over K, then F is an algebraic extension of K.