So, M is parallelightle
$$\iff \exists n = \dim M$$
 vector fields that are
noisbue dependent (ie lin ind. at soch xeM)
 $E_{x} \cdot M = S^{2}$ is not parallelightle (e.g. by hairy ball thm)
 $M = S^{3}$ is; so is any compact orientable 3-manifold (related to "spin"
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} parallelightle $\iff n = 0, 1, 3, 7$. (Hitner, Bit. Kernere)
 S^{n} bundle $\pi : E \rightarrow B$ is three to a network dependent
 S^{n} bundle $\pi : E \rightarrow B$ is three to a network outso bundle $\pi : E$
 S^{n} π^{n} is network outso bundle $\oplus n = 0, \pi :$
 $S^{n} = 0$ $B = \pi$
That is $E(S'_{1}) \cong [0, \pi] \times R_{n}(\pi) = (1, 1, n))$
 $B = 0$ $B = \pi$
That is $E(S'_{1}) \cong [0, \pi] \times R_{n}(\pi) = (1, 1, n))$
 $B = 0$ $B = \pi$
That is in thread bodies $\#$ a non-gin before $S: R^{n} \rightarrow E(S'_{1})$. Suppose not, and considen
 $S^{n} \rightarrow R^{n} \rightarrow E(S'_{1})$, wording $\times \mapsto (1, 1, t(x) \times)$. $E:S^{n} \rightarrow R$ must burgleg
 $t(-x) = -t(x)$ (as $(t \times 1, t(-x)(-y)) = ([X], t(x) \times)$). But $EVT \Rightarrow \exists x, st.$
 $t(x) = 0$ that $S([X, 1])$ vorishin. \blacksquare

Grassmannian manifolds

Recall Gauss map for (oriented) 1-manifolds $M^{1} \subset R^{3}$:

and all for (oriented) hypersurfare Mⁿ C Rⁿ⁺¹, $\Psi: M^n \to S^n$. $\ell(x)$ describes tongest space (a normal space, equivalently)

For submanifold $M^n \subset \mathbb{R}^{n+k}$, we'll view issignment $x \longmapsto T_xM$ as a map into some space.

Sketch of construction)
It suffices to construct
$$E \xrightarrow{P} \mathbb{R}^{n}$$
 withose restriction to files is linear, rejective.
Then we define $E \longrightarrow E(T_n(\mathbb{R}^n))$ by $e \longmapsto (\Psi(\frac{f_i}{H_{nn}}e), \Psi(e))$.
To that end, cover B by $U_{1i} \longrightarrow U_r$ "triviclizing" nobuls.
For each i, the triviclization gives
 $\mathcal{Y}_i: \pi^{-1}(U_i) \longrightarrow \mathbb{R}^n$
Idea: map each $\pi^{-1}(U_i)$ into its own summand,
 $E \longrightarrow \mathbb{R}^n \oplus \cdots \oplus \mathbb{R}^n = \mathbb{R}^n$
 $e \longmapsto (A_i(\mathcal{Y}_i(e), \dots, \mathcal{Y}_i(e), \mathcal{Y}_r(e)))$

Similar constructions hold for para compart B, but for a bundle $E(\mathcal{T}_n(\mathbb{R}^\infty)) \longrightarrow G_n(\mathbb{R}^\infty).$

Given a voctor bandle $E \xrightarrow{} B$ and a map $X \xrightarrow{} B$, can form induced or pullback bundle: $f^*E \rightarrow X$, where

 $f^{\dagger}E = \{ (x,e) \mid f(x) = \pi(e) \} \text{ (note fibe one } x \cong \text{ (ibe one } f(x)) \}$ The existence of a map $E \longrightarrow E(\mathcal{Y}_n(\mathbb{R}^{n+\kappa})) \text{ induces a map on bases}$ $B \longrightarrow G_n(\mathbb{R}^{n+\kappa}) \tag{5}$

Prop
$$f^*E(\mathcal{X}_{n}(\mathbb{R}^{n+k}))$$
 is isomorphic to E (as verter bundles over B).
prof: We'll show the more general distance:
If $f:E \rightarrow E'$ is a map of vector bundles whose
reduction to each filter is an isomorphism, then $E \simeq \overline{f}^*E'$.
 $(\overline{f}:B \rightarrow B'$ is induced map of bases.)
But thus is obvious, since there is a natural map
 $E \rightarrow \overline{f}^*E'$ (as there is for any pullback)
 $e \longmapsto (\pi(e), f(es))$
that bands filter through e to filter over $\pi(e) \simeq$ filter through $f(e)$. D
So we have an adsignment
 $[\mathbb{R}^n$ -bundles and $B] \longrightarrow {f:B \rightarrow G_n(\mathbb{R}^\infty)}$
and the pullback construction gives one is opposite direction.
Turns out:
 $[\mathbb{R}^n$ -bundles over $B] \longleftrightarrow [f:B \rightarrow G_n(\mathbb{R}^\infty)]$